Neuroscience articles within Nature

Featured

  • Letter |

    The European corn borer consists of two sex pheromone races, leading to strong reproductive isolation which could represent a first step in speciation. Female sex pheromone production and male behavioural response are under the control of different genes, but the identity of these genes is unknown. These authors show that allelic variation in a gene essential for pheromone biosynthesis accounts for the phenotypic variation in female pheromone production, leading to race-specific signals.

    • Jean-Marc Lassance
    • , Astrid T. Groot
    •  & Christer Löfstedt
  • News & Views |

    Neurons generate their output signal — the action potential — in a distinct region of the axon called the initial segment. The location and extent of this trigger zone can be modified by neural activity to control excitability.

    • Jan Gründemann
    •  & Michael Häusser
  • Letter |

    Large-conductance Ca2+-gated K+ (BK) channels are essential for many biological processes, such as smooth muscle contraction and neurotransmitter release. Here, the X-ray crystal structure is presented of the entire cytoplasmic region of the human BK channel in a Ca2+-free state. Moreover, a voltage-gated K+ channel pore of known structure is 'docked' onto the gating ring to generate a structural model for the full BK channel.

    • Yunkun Wu
    • , Yi Yang
    •  & Youxing Jiang
  • Letter |

    The primary visual cortex (V1) is crucial for vision, yet people with V1 injuries might still point to or avoid visual stimuli, despite having no conscious perception of them. It has been thought that this 'blindsight' relies on visual pathways that bypass the usual route from lateral geniculate nucleus (LGN) to V1. But it is shown here — using a combination of permanent and reversible lesions, behavioural testing and functional magnetic resonance imaging (fMRI) mapping — that a critical link in the alternative pathway is in fact the LGN.

    • Michael C. Schmid
    • , Sylwia W. Mrowka
    •  & David A. Leopold
  • Letter |

    Circadian rhythms control many physiological functions. During periods of feeding, pancreatic islets secrete insulin to maintain glucose homeostasis — a rhythmic process that is disturbed in people with diabetes. These authors show that pancreatic islets contain their own clock: they have self-sustained circadian oscillations of CLOCK and BMAL1 genes and proteins, which are vital for the regulation of circadian rhythms. Without this clock, a cascade of cellular failure and pathology initiates the onset of diabetes mellitus.

    • Biliana Marcheva
    • , Kathryn Moynihan Ramsey
    •  & Joseph Bass
  • Letter |

    To build a representation of the auditory world, neuronal circuits in neonatal rodents exhibit plasticity, allowing sensitivity to the pattern of sensory inputs. At this time, neurons construct a receptive field, which relies on a balance of excitatory and inhibitory inputs. Here, excitation and inhibition were found to be co-tuned upon hearing onset, but later an adjustment in the excitatory input strength occurred. Thus a fine adjustment in synaptic inputs, rather than more radical changes such as input pruning, may refine mature receptive fields.

    • Yujiao J. Sun
    • , Guangying K. Wu
    •  & Li I. Zhang
  • Letter |

    To build a representation of the auditory world, neuronal circuits in neonatal rodents exhibit plasticity, allowing sensitivity to the pattern of sensory inputs. At this time, neurons construct a receptive field, which relies on a balance of excitatory and inhibitory inputs. Here, excitation and inhibition were found to be co-tuned upon hearing onset, but an experience-dependent refinement of inhibition later occurred. Thus a fine adjustment in synaptic inputs, rather than more radical changes such as input pruning, may refine mature receptive fields.

    • Anja L. Dorrn
    • , Kexin Yuan
    •  & Robert C. Froemke
  • Letter |

    A nerve cell sends signals to others through action potentials, which begin at the 'initial segment' of the neuron's axon. Here it is shown that the length of this initial segment increases in bird auditory neurons that have been deprived of auditory stimulation. The resulting increase in intrinsic excitability — the tendency to fire action potentials — represents a new form of neuronal plasticity and might contribute to the maintenance of the auditory pathway after hearing loss.

    • Hiroshi Kuba
    • , Yuki Oichi
    •  & Harunori Ohmori
  • Letter |

    A nerve cell sends signals to others through action potentials, which begin at the 'initial segment' of the neuron's axon. It is now shown that changes in electrical activity can alter the position of this initial segment in cultured rat hippocampal neurons. The resulting increase in intrinsic excitability — the tendency to fire action potentials — represents a new form of neuronal plasticity and could provide a new target in the control of epilepsy.

    • Matthew S. Grubb
    •  & Juan Burrone
  • Letter |

    Blood oxygenation level-dependent (BOLD) signals are the basis for much of the work on which regions of the human brain are active during particular tasks or behaviours, but there is controversy over their source and interpretation. Here a combination of optogenetics and BOLD signal monitoring shows that specific excitatory neurons within a mixed population are sufficient to produce positive BOLD signals, and could be used to map connections.

    • Jin Hyung Lee
    • , Remy Durand
    •  & Karl Deisseroth
  • Editorial |

    Biomedical research continues to use many more male subjects than females in both animal studies and human clinical trials. The unintended effect is to short-change women's health care.

  • Editorial |

    • Magdalena Skipper
    • , Ursula Weiss
    •  & Noah Gray
  • News & Views |

    Analysis of a selected class of neuron in the brains of live animals using functional magnetic resonance imaging (fMRI) opens the door to mapping genetically specified neural circuits.

    • David A. Leopold
  • Letter |

    The autistic spectrum disorders (ASDs) are highly heritable, yet the underlying genetic determinants remain largely unknown. Here, a genome-wide analysis of rare copy number variants (CNVs) has been carried out, revealing that ASD sufferers carry a higher load of rare, genic CNVs than do controls. Many of these CNVs are de novo and inherited. The results implicate several novel genes in ASDs, and point to the importance of cellular proliferation, projection and motility, as well as specific signalling pathways, in these disorders.

    • Dalila Pinto
    • , Alistair T. Pagnamenta
    •  & Catalina Betancur
  • Letter |

    Proper functioning of the brain requires a balance between the formation of excitatory and inhibitory synapses, but how this is achieved during development is unclear. Here FGF22 and FGF7, two fibroblast growth factor cell–cell signalling molecules, are shown to promote the formation of excitatory and inhibitory synapses, respectively, through their effect on epilepsy in mice. These findings should inform other neurological and psychiatric disorders involving defects in synapse formation.

    • Akiko Terauchi
    • , Erin M. Johnson-Venkatesh
    •  & Hisashi Umemori
  • Editorial |

    Rats turn out to be surprisingly useful for research on cognition. But if the goal is to understand the human brain and its many disorders, then primate studies remain essential.

  • Books & Arts |

    The latest collaborative artwork from neuroscientist Morten Kringelbach and artist Annie Cattrell reveals — and revels in — sensory dialogues in the brain, explains Martin Kemp.

    • Martin Kemp
  • News Feature |

    Studying primates is the only way to understand human cognition — or so neuroscientists thought. But there may be much to learn from rats and mice, finds Alison Abbott.

    • Alison Abbott
  • Article |

    Neurotransmitter:Na+ symporters (NSS) remove neurotransmitters from the synapse in a reuptake process that is driven by the Na+ gradient. Here, single-molecule fluorescence imaging assays have been combined with molecular dynamics simulations to probe the conformational changes that are associated with substrate binding and transport by a prokaryotic NSS homologue, LeuT. The findings are interpreted in the context of an allosteric mechanism that couples ion and substrate binding to transport.

    • Yongfang Zhao
    • , Daniel Terry
    •  & Jonathan A. Javitch
  • Letter |

    The enzyme inositol polyphosphate phosphatase 4A (INPP4A) removes phosphate groups from phosphatidylinositol-3,4-bisphosphate, a key cellular lipid. Here, a crucial role for INPP4A in maintaining the integrity of the brain is described. Mice that lack this enzyme suffer from neurodegeneration in the striatum of the brain, as well as severe involuntary movements. When present, INPP4A protects neurons from a particular type of cell death.

    • Junko Sasaki
    • , Satoshi Kofuji
    •  & Takehiko Sasaki
  • News Feature |

    Systems neuroscientists are pushing aside their electrophysiology rigs to make room for the tools of 'optogenetics'. Lizzie Buchen reports from a field in the process of reinvention.

    • Lizzie Buchen
  • Letter |

    Amyotrophic lateral sclerosis (ALS) is a disorder characterized by the degeneration of motor neurons. About 10% of cases are familial, but the mutations identified in these families account for only 20–30% of such cases. Here a new set of mutations in familial ALS is found — in the gene encoding optineurin. Given the effect of optineurin mutations on the NF-κB protein, it is suggested that inhibiting NF-κB might be useful in treating ALS.

    • Hirofumi Maruyama
    • , Hiroyuki Morino
    •  & Hideshi Kawakami
  • Article |

    A common anatomical feature of the sensory cortex in many species is that neurons with similar features cluster into vertically orientated domains spanning all layers of the cortex. Moreover, neurons in one domain modulate neurons in neighbouring domains through horizontal connections. A combination of techniques has now been used to show that such horizontal projections suppress layers of cortex devoted to processing inputs, but facilitate layers devoted to outputs.

    • Hillel Adesnik
    •  & Massimo Scanziani
  • News & Views |

    The neocortex of the mammalian brain mediates functions such as sensory perception and ultimately consciousness and language. The spread of local signals across large distances in this brain region has now been clarified.

    • Dirk Feldmeyer
  • News and Views Q&A |

    The ability to perceive Earth's magnetic field, which at one time was dismissed as a physical impossibility, is now known to exist in diverse animals. The receptors for the magnetic sense remain elusive. But it seems that at least two underlying mechanisms exist — sometimes in the same organism.

    • Kenneth J. Lohmann