Inorganic chemistry articles within Nature Chemistry

Featured

  • Article
    | Open Access

    Dimetallocenes are a narrow class of compounds represented by the homobimetallic examples dizincocene and diberyllocene. Now a heterobimetallic dimetallocene featuring lithium and aluminium centres has been synthesized. The Al–Li bond is shown to cleave upon reaction with N-heterocyclic carbenes and heteroallenes.

    • Inga-Alexandra Bischoff
    • , Sergi Danés
    •  & André Schäfer
  • Article
    | Open Access

    Calcium difluoride is a source of fluorochemicals, but the reactivity of Ca–F moieties is not well understood. Now a library of molecular Ca–F complexes featuring unique structural motifs has been synthesized, including via fluorochemical defluorination. Studies of mono- and dinuclear systems provided structure–activity relationships for E–F bond formation.

    • Job J. C. Struijs
    • , Mathias A. Ellwanger
    •  & Simon Aldridge
  • Article |

    The number of known high-oxidation-state transuranic compounds remains limited, and these typically feature high coordination numbers and/or multiply-bonded donor atoms. Now, a tetrahedral, pentavalent neptunium complex supported by four monoanionic ligands has been isolated and characterized. This complex is stable in the solid state and undergoes a proton-coupled electron transfer reaction in solution.

    • Julie E. Niklas
    • , Kaitlyn S. Otte
    •  & Henry S. La Pierre
  • Article
    | Open Access

    The development of new methodologies to convert plastics into fuels without relying on noble metal-based catalysts is desirable. Now it is shown that a layered self-pillared zeolite enables the conversion of polyethylene to gasoline with a selectivity of 99% and yields of >80% without the need to use external hydrogen.

    • Ziyu Cen
    • , Xue Han
    •  & Buxing Han
  • News & Views |

    Biological and synthetic catalysts often utilize iron in high oxidation states (+IV and greater) to perform challenging molecular transformations. A coordination complex featuring an Fe(VII) ion has now been synthesized through sequential oxidations of nonheme iron–nitrido precursors.

    • Adam T. Fiedler
    •  & Laxmi Devkota
  • Article |

    Although the light-driven generation of hydrogen from water is a promising approach to renewable fuels, the H–H bond formation step represents a persistent mechanistic question. Now light-harvesting molecular catalysts have been shown to self-assemble into nanoscale aggregates that feature improved efficiency for photoelectrochemical H2 evolution.

    • Isaac N. Cloward
    • , Tianfei Liu
    •  & Alexander J. M. Miller
  • Article
    | Open Access

    A previous investigation of the anti-aromatic dianion of [18]annulene concluded that it consists of a mixture of two isomers. Now it has been shown that this dianion exists as a single isomer, with a different geometry from neutral [18]annulene, and that it can be reduced further to an aromatic tetraanion.

    • Wojciech Stawski
    • , Yikun Zhu
    •  & Harry L. Anderson
  • Article |

    Actinide–metal multiple bonds are relatively rare, with isolable examples under normal experimental conditions typically restricted to complexes containing a polar covalent σ bond supplemented by up to two dative π bonds. Now complexes featuring polar covalent double and triple bonds between thorium and antimony have been synthesized.

    • Jingzhen Du
    • , Kevin Dollberg
    •  & Stephen T. Liddle
  • Article |

    Valence tautomerism in lanthanide-based materials is rare. Now a one-dimensional samarium–pyrazine polymer has been shown to exhibit a temperature-induced hysteretic Sm(III)-to-Sm(II) reversible switch. The transition temperature is modulated in a 150 K window by alloying with Yb(II), presenting a strategy for developing new materials with chemically tunable magnetic switchability.

    • Maja A. Dunstan
    • , Anna S. Manvell
    •  & Kasper S. Pedersen
  • Article
    | Open Access

    Complexes of iron in high oxidation states play a pivotal role as active intermediates in numerous catalytic processes. Now, using a multimethod approach on a single molecular system, it has been shown that a stable high-valent Fe(VI) nitride can be converted to a reactive, superoxidized, heptavalent Fe(VII) nitride.

    • Martin Keilwerth
    • , Weiqing Mao
    •  & Karsten Meyer
  • News & Views |

    Despite the growing clinical use of radium in cancer treatments, the fundamental chemistry of nature’s largest +2 cation remains largely unexplored. Now, structural analysis of a radium complex reveals that its behaviour cannot always be predicted from the chemistry of its closest nonradioactive congener, barium.

    • Joshua J. Woods
    •  & Rebecca J. Abergel
  • Article |

    Photon-driven dinitrogen reduction to ammonia is a promising but challenging reaction. Now it has been shown that lithium hydride undergoes photolysis upon ultraviolet illumination to yield long-lived photon-generated electrons residing in hydrogen vacancies, favouring the activation of the N≡N bond and achieving photocatalytic ammonia synthesis.

    • Yeqin Guan
    • , Hong Wen
    •  & Ping Chen
  • Article |

    The activation of dioxygen at metal centres, and subsequent functionalization of unactivated C‒H bonds, requires the generation of high-energy radical intermediates that often result in undesirable side reactions. Now an elusive oxygen-derived reactive iron(II)–radical intermediate is spectroscopically characterized as part of a strategy to stabilize phenoxyl radical cofactors during substrate oxidation reactions.

    • Dustin Kass
    • , Virginia A. Larson
    •  & Kallol Ray
  • News & Views |

    The study of disordered materials poses numerous challenges, and computational approaches have proved useful to supplement and support structural experiments. Now, an abstract computational model has been used to study the structure of amorphous calcium carbonate, providing mechanistic insights into the emergence of the disordered phase as well as its atomic-level configurations.

    • Julia Dshemuchadse
  • Article |

    Borenium ions have traditionally served as main group (pre-)catalysts, and their use in materials-related applications have been limited by their instability. Now, a series of fully π-conjugated azaboraacenium ions derived from carbodicarbene have been developed that exhibit high air and moisture stability with full colour-tunable luminescence. Furthermore, these azaboraacene cations mimic the electronic structures of higher-order carbonaceous acenes while featuring enhanced resistance to photo-oxidation.

    • Chun-Lin Deng
    • , Akachukwu D. Obi
    •  & Robert J. Gilliard Jr.
  • Article |

    Activation of H2 by a metal–olefin complex is characterized experimentally and computationally using a nickel pincer complex, showing that the reaction proceeds via a direct ligand-to-ligand hydrogen transfer mechanism. An application of this cooperative H2-activation mechanism is demonstrated in the nickel-catalysed semihydrogenation of diphenylacetylene.

    • María L. G. Sansores-Paredes
    • , Martin Lutz
    •  & Marc-Etienne Moret
  • Article |

    Radium complexes are of interest for use as cancer therapeutic agents, but the structure and bonding are poorly understood. Here, the synthesis of a Ra2+ complex is reported, and the structure and bonding characteristics are elucidated using single-crystal X-ray diffraction.

    • Frankie D. White
    • , Nikki A. Thiele
    •  & Samantha K. Cary
  • In Your Element |

    Didier Astruc surveys the numerous applications of ferrocene, from catalysis to materials and redox-related devices including biosensors and nanomedicine.

    • Didier Astruc
  • News & Views |

    The factors that control the solubility of a salt are many and varied. Now a set of salts with closely related cations suggests that weak London dispersion-controlled CH···π interactions can dominate solubility, despite the presence of much stronger forces.

    • Steve Scheiner
  • Article |

    The reversible N–H activation and catalytic transformations of ammonia are a challenge. Now, a hidden frustrated Lewis pair is shown to activate non-aqueous ammonia thermoneutrally and split the N–H bond reversibly at ambient temperature. The N–H-activated ammonia was also utilized as an atom-economical nitrogen source for catalytic NH3 transfer reactions.

    • Felix Krämer
    • , Jan Paradies
    •  & Frank Breher
  • Article
    | Open Access

    Although amorphous calcium carbonate represents an important biomineralization precursor, its structure has been difficult to understand. Now, amorphous calcium carbonate’s structure is shown to arise from the different bridging modes available to the calcium ions. This effective multi-well potential that drives calcium arrangements creates a geometric incompatibility between preferred Ca–Ca distances and frustrates crystallization.

    • Thomas C. Nicholas
    • , Adam Edward Stones
    •  & Andrew L. Goodwin
  • Article |

    The Au2+ oxidation state is rarely stable in molecules or extended solids, where extreme synthetic conditions or exotic ligands are often necessary. Now, Au2+ has been stabilized with simple Cl ligands in Cs4AuIIAuIII2Cl12, an extended solid with a perovskite-derived structure that is readily synthesized under mild conditions and is stable to ambient conditions.

    • Kurt P. Lindquist
    • , Armin Eghdami
    •  & Hemamala I. Karunadasa
  • Article
    | Open Access

    Although noble metal coordination complexes typically show promising photophysical properties that enable applications in lighting, photocatalysis and solar energy conversion, first-row transition metal complexes rarely display properties as attractive. Now, two Cr(0) complexes are shown to afford excited-state lifetimes of ~50 ns and photophysical properties analogous to noble metal complexes, enabling efficient photoredox catalysis.

    • Narayan Sinha
    • , Christina Wegeberg
    •  & Oliver S. Wenger
  • Article |

    Functionalizing two-dimensional transition-metal carbide (MXene) surfaces can alter their properties, but covalent functionalization has been synthetically challenging. Now, it has been shown that various organic groups can be covalently attached to MXene surfaces through amido and imido bonds. The resulting hybrid organic–inorganic structures exhibit Fano resonances and superior stability compared with traditional MXenes with a mixture of –F, –O and –OH surface terminations.

    • Chenkun Zhou
    • , Di Wang
    •  & Dmitri V. Talapin
  • In Your Element |

    Fiona C. Meldrum and Helmut Cölfen chalk up some of the myriad forms and uses of calcium carbonate to burnish a ‘dull’ reputation.

    • Fiona C. Meldrum
    •  & Helmut Cölfen
  • In Your Element |

    Martin Johansen and Abhik Ghosh reflect on the unusual chemistry of carbones — whose central carbon atom bears two lone pairs — and their role as double-dative ligands.

    • Martin A. L. Johansen
    •  & Abhik Ghosh
  • News & Views |

    Pharmacologically inactive prodrugs that can be activated by near-infrared light are attractive candidates for clinical applications. Now, platinum-based photo-oxidants have been shown to eradicate tumours in mice with a new mode of action.

    • Gloria Vigueras
    •  & Gilles Gasser
  • Article |

    Aluminium and silicon, two Earth-abundant, well-understood elements, typically form weak Al–Si bonds. Now, complexes featuring an anionic Al–Si core stabilized by bulky substituents and a Si–Na interaction have been isolated. This Al–Si interaction possesses partial double bond character, which can be increased by sequestration of the sodium counterion.

    • Moritz Ludwig
    • , Daniel Franz
    •  & Shigeyoshi Inoue
  • Article |

    Conventional photo-driven cancer treatment agents require oxygen and visible light to induce cell death, limiting their efficacy in deep, oxygen-poor tumours. Now, a class of NIR-activatable Pt(IV) photooxidants that target the endoplasmic reticulum have been shown to effectively overcome these limitations by directly oxidizing intracellular biomolecules in an oxygen-independent fashion, presenting a promising new direction for next-generation metal-based drug development.

    • Zhiqin Deng
    • , Huangcan Li
    •  & Guangyu Zhu
  • Research Briefing |

    Low-coordinate lanthanide complexes with strong magnetic anisotropy could afford high-performance single-molecule magnets (SMMs) but are challenging to synthesize. Now, through ligand design, a near-linear pseudo-two-coordinate Yb(iii) complex that exhibits slow magnetic relaxation is reported. The complex has a large total splitting of the ground-state manifold, arising from the crystal field imposed by the ligands.

  • News & Views |

    The atomically precise assembly of metal nanoparticles offers vast possibilities for materials chemistry. Ring-shaped polyoxometalates have now served to stabilize Ag30 nanoparticles with exposed surfaces.

    • Carsten Streb
  • Article |

    Atomically precise metal nanoclusters can serve a variety of purposes, yet their high reactivity also makes them difficult to synthesize. Now, well-defined {Ag30} nanoclusters have been prepared within ring-shaped polyoxometalates. These nanoclusters show good stability in solution and the solid state, can undergo redox-induced structural transformation, and possess exposed surfaces that can serve as catalytically active sites.

    • Kentaro Yonesato
    • , Daiki Yanai
    •  & Kosuke Suzuki
  • Article |

    A trivalent 4f cationic complex bearing two bis-silylamide ligands has been prepared that displays slow magnetic relaxation. The bulky ligands and weakly coordinating anion stabilize the pseudotrigonal geometry necessary to elicit strong ground-state magnetic anisotropy in this axially coordinated Yb(III) complex with well-localized charges.

    • Dylan Errulat
    • , Katie L. M. Harriman
    •  & Muralee Murugesu
  • Article
    | Open Access

    The metallophilic interaction between cyclometalated palladium complexes can facilitate supramolecular nanostructure formation in living mice, providing a phototoxic prodrug with a long circulation time and high tumour-targeting efficiency. Upon green light irradiation, this palladium-based drug destroys solid tumours, leaving non-irradiated organs intact.

    • Xue-Quan Zhou
    • , Peiyuan Wang
    •  & Sylvestre Bonnet
  • News & Views |

    Monomeric stibine oxide has remained elusive due to the large antimony orbitals coupled with a high electronegativity difference with oxygen. Now, a free tris(2,6-diisopropylphenyl)stibine oxide has been isolated that can act as oxo-transfer reagent.

    • Moumita Majumdar
  • News & Views |

    The chemistry of polynitrogens has been enriched by a new isomer of N6 through the synthesis, in a laser-heated diamond anvil cell, of a charged aromatic [N6]4– ring that is recoverable at ambient temperature under high pressure.

    • Sandra Ninet
  • Article |

    Californium is difficult to prepare in its divalent state. Now, crystals of a Cf(II) crown–ether complex have been synthesized by reduction of a Cf(III) precursor with an Al/Hg amalgam. They exhibit 5f→6d transitions in the visible region and near-infrared emission that are highly sensitive to changes in the coordination environment.

    • Todd N. Poe
    • , Harry Ramanantoanina
    •  & Cristian Celis-Barros
  • Article
    | Open Access

    In contrast to phosphine and arsine oxides, stibine oxides have been challenging to isolate in monomeric forms as they tend to polymerize. Now, such a SbO moiety has been kinetically stabilized using sterically bulky protecting groups, and its reactivity found to be substantially different to that of its lighter pnictogen counterparts.

    • John S. Wenger
    • , Monica Weng
    •  & Timothy C. Johnstone
  • Article |

    Aromatic polynitrogen units can display both high stability and high energy content. A hexazine anion has now been identified in a complex compound, K9N56, which is formed at high pressures and temperatures under laser-heating in a diamond anvil cell. The [N6]4− ring is planar and proposed to be aromatic.

    • Dominique Laniel
    • , Florian Trybel
    •  & Natalia Dubrovinskaia
  • Article
    | Open Access

    Aromaticity is a ubiquitous concept in organic chemistry yet it is less widespread for inorganic species. Now the cluster [(CpRu)3Bi6], obtained as part of a soluble salt, has been shown to exhibit aromatic behaviour referred to as φ-type, owing to a highly regular {Bi6} substructure causing a non-localizable molecular orbital of \(f_{z^3}\)-like symmetry.

    • Benjamin Peerless
    • , Andreas Schmidt
    •  & Stefanie Dehnen
  • Article |

    Gold nanoparticles typically exhibit hard-sphere-like assembly behaviour, but now the size, morphology and symmetry of crystals of Au25 nanoparticles have been tuned. The presence of excess tetraethylammonium cations has been shown to promote the one-dimensional assembly of the nanoparticles, which in turn form rod-like crystals, by stabilizing dynamically detached ligands from adjacent particles into interparticle linkers through CH⋯π and ion-pairing interactions.

    • Qiaofeng Yao
    • , Lingmei Liu
    •  & Jianping Xie
  • Article |

    Heavy analogues of carbynes of the type R–\({{{\dot{\mathrm E:}}}}\), where E is a group 14 element, are difficult to isolate in the condensed phase due to their high reactivity. Now, a germylyne radical supported by a sterically hindered hydrindacene ligand has been prepared and structurally characterized. Theoretical calculations show that the spin density mainly resides at the germanium centre.

    • Dongmin Wang
    • , Cai Zhai
    •  & Gengwen Tan
  • Perspective |

    Hydrogen, which possesses the highest gravimetric energy density of any energy carrier, is attractive for both mobile and stationary power, but its low volumetric energy density poses major storage and transport challenges. This Perspective delineates potential use cases and defines the challenges facing the development of materials for efficient hydrogen storage.

    • Mark D. Allendorf
    • , Vitalie Stavila
    •  & Tom Autrey
  • Article |

    The reduction of nitrite (NO2) to nitric oxide (NO), relevant to the biogeochemical nitrogen cycle as well as radioactive waste, typically occurs at redox-active metal centres. Now, a Lewis acid-capped nitrite has been reduced to the nitrite dianion (NO22−), a nitrogen-centred radical that connects three redox levels in the global nitrogen cycle through NO2, NO and N2O.

    • Valiallah Hosseininasab
    • , Ida M. DiMucci
    •  & Timothy H. Warren
  • Article |

    The study of rare isotopes is hampered by their scarcity, cost and sometimes toxicity. Now polyoxometalate ligands have been shown to facilitate the capture of f-block elements and their characterization. Single-crystal X-ray diffraction structures have been obtained for several molecular complexes, including three of the rare curium-248, from minute amounts (micrograms) of material.

    • Ian Colliard
    • , Jonathan R. I. Lee
    •  & Gauthier J.-P. Deblonde
  • Article |

    Although neutral and anionic low-valent aluminium complexes are widespread, their cationic counterparts have remained rare. Now, a salt of [Al(AlCp*)3]+ featuring a formal low-valent Al+ cation has been isolated that dimerizes in concentrated solutions and the solid state, and also forms Al4 clusters on coordinating with Lewis bases.

    • Philipp Dabringhaus
    • , Julie Willrett
    •  & Ingo Krossing
  • Article |

    Precursors for the release of phosphorus mononitride in solution under mild conditions have remained elusive. Now, an explosive anthracene-stabilized azidophosphine has shown PN transfer reactivity in the synthesis of an Fe–NP complex. The PN ligand is N-bonded, as the Fe–N interaction shows significant covalent character and a less unfavourable Pauli repulsion than its Fe–P counterpart.

    • André K. Eckhardt
    • , Martin-Louis Y. Riu
    •  & Christopher C. Cummins
  • In Your Element |

    The tris(2,2′-bipyridine)ruthenium(II) cation, or ‘rubipy’ to its friends, has had a significant influence on our understanding of the photophysics of transition metal complexes, and has also helped revolutionize organic photochemistry, explains Daniela M. Arias-Rotondo.

    • Daniela M. Arias-Rotondo
  • Article |

    Catalytic transformations of methane frequently involve the formation of a metal–methane complex, but these compounds are challenging to observe. Now, a relatively long-lived osmium–methane complex has been characterized using NMR spectroscopy and forms from the direct binding of methane to a photolytically generated, coordinatively unsaturated cationic osmium–carbonyl complex dissolved in an inert hydrofluorocarbon solvent at –90 °C.

    • James. D. Watson
    • , Leslie. D. Field
    •  & Graham. E. Ball