Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner

Abstract

Conventional light-driven cancer therapeutics require oxygen and visible light to indirectly damage biomolecules, limiting their efficacy in deep, hypoxic tumours. Here we report the use of near-infrared-activated small-molecule Pt(IV) photooxidants to directly oxidize intracellular biomolecules in an oxygen-independent manner, achieving controllable and effective elimination of cancer stem cells. These Pt(IV) complexes accumulate in the endoplasmic reticulum and show low toxicity in the dark. Upon irradiation, the resultant metal-enhanced photooxidation effect causes them to robustly photooxidize survival-related biomolecules, induce intense oxidative stress, disrupt intracellular pH (pHi) homeostasis and initiate nonclassical necrosis. In vivo experiments confirm that the lead photooxidant can effectively inhibit tumour growth, suppress metastasis and activate the immune system. Our study validates the concept of metal-enhanced photooxidation and the subsequent chemotherapeutic applications, supporting the development of such localized photooxidants to directly damage intracellular biomolecules and decrease pHi as a strategy for effective metal-based drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photoactivation and electrochemistry properties of 5a and 5b.
Fig. 2: Photooxidants 5a and 5b effectively oxidized conventional intracellular biomolecules upon NIR light activation.
Fig. 3: Photooxidants 5a and 5b accumulated in the ER and effectively eliminated cancer cells upon NIR-light activation.
Fig. 4: Photooxidant 5a induces nonclassical necrosis after photoactivation.
Fig. 5: In vivo antitumour effects of 5a.

Similar content being viewed by others

Data availability

All relevant data supporting the findings of this study are available within the article and its supplementary information. Source data are provided with this paper.

References

  1. Monro, S. et al. Transition metal complexes and photodynamic therapy from a tumor-centered approach: challenges, opportunities and highlights from the development of TLD1433. Chem. Rev. 119, 797–828 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Farrer, N. J., Salassa, L. & Sadler, P. J. Photoactivated chÿemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans. 2009, 10690–10701 (2009).

    Article  Google Scholar 

  3. Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).

    Article  PubMed  Google Scholar 

  4. Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Celli, J. P. et al. Imaging and photodynamic therapy: mechanisms, monitoring and optimization. Chem. Rev. 110, 2795–2838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McFarland, S. A., Mandel, A., Dumoulin-White, R. & Gasser, G. Metal-based photosensitizers for photodynamic therapy: the future of multimodal oncology? Curr. Opin. Chem. Biol. 56, 23–27 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Du, J. et al. Enhanced photodynamic therapy for overcoming tumor hypoxia: from microenvironment regulation to photosensitizer innovation. Coord. Chem. Rev. 427, 213604 (2021).

    Article  CAS  Google Scholar 

  8. Baptista, M. S. et al. Type I and type II photosensitized oxidation reactions: guidelines and mechanistic pathways. Photochem. Photobiol. 93, 912–919 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Allison, R. R. & Sibata, C. H. Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn. Ther. 7, 61–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Heinemann, F., Karges, J. & Gasser, G. Critical overview of the use of Ru(II) polypyridyl complexes as photosensitizers in one-photon and two-photon photodynamic therapy. Acc. Chem. Res. 50, 2727–2736 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Dewaele, M. et al. Autophagy pathways activated in response to PDT contribute to cell resistance against ROS damage. J. Cell. Mol. Med. 15, 1402–1414 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Persi, E. et al. Systems analysis of intracellular pH vulnerabilities for cancer therapy. Nat. Commun. 9, 2997 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Pawlicki, M., Collins, H. A., Denning, R. G. & Anderson, H. L. Two‐photon absorption and the design of two‐photon dyes. Angew. Chem. Int. Ed. 48, 3244–3266 (2009).

    Article  CAS  Google Scholar 

  15. Imberti, C., Zhang, P., Huang, H. & Sadler, P. J. New designs for phototherapeutic transition metal complexes. Angew. Chem. Int. Ed. 59, 61–73 (2020).

    Article  CAS  Google Scholar 

  16. Wexselblatt, E., Yavin, E. & Gibson, D. Platinum(IV) prodrugs with haloacetato ligands in the axial positions can undergo hydrolysis under biologically relevant conditions. Angew. Chem. Int. Ed. 52, 6059–6062 (2013).

    Article  CAS  Google Scholar 

  17. Deng, Z. et al. A photocaged, water-oxidizing, and nucleolus-targeted Pt(IV) complex with a distinct anticancer mechanism. J. Am. Chem. Soc. 142, 7803–7812 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Wong, D. Y. Q., Lim, J. H. & Ang, W. H. Induction of targeted necrosis with HER2-targeted platinum(IV) anticancer prodrugs. Chem. Sci. 6, 3051–3056 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. To, W. P., Liu, Y., Lau, T. C. & Che, C. M. A robust palladium(II)-porphyrin complex as catalyst for visible light induced oxidative C-H functionalization. Chem. Eur. J. 19, 5654–5664 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Yang, X. et al. Characterization of G‐quadruplex/hemin peroxidase: substrate specificity and inactivation kinetics. Chem. Eur. J. 17, 14475–14484 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).

    Article  PubMed  Google Scholar 

  22. Lytle, N. K., Barber, A. G. & Reya, T. Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer 18, 669–680 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, X., Kwon, N., Guo, T., Liu, Z. & Yoon, J. Innovative strategies for hypoxic‐tumor photodynamic therapy. Angew. Chem. Int. Ed. 57, 11522–11531 (2018).

    Article  CAS  Google Scholar 

  24. Stamati, I. et al. Novel photosensitisers derived from pyropheophorbide-a: uptake by cells and photodynamic efficiency in vitro. Photochem. Photobiol. Sci. 9, 1033–1041 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Mandl, J., Mészáros, T., Bánhegyi, G. & Csala, M. Minireview: endoplasmic reticulum stress: control in protein, lipid and signal homeostasis. Mol. Endocrinol. 27, 384–393 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lu, J. & Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Clarke, H. J., Chambers, J. E., Liniker, E. & Marciniak, S. J. Endoplasmic reticulum stress in malignancy. Cancer Cell 25, 563–573 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Steinegger, A., Wolfbeis, O. S. & Borisov, S. M. Optical sensing and imaging of pH values: spectroscopies, materials and applications. Chem. Rev. 120, 12357–12489 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. & Kroemer, G. Cell death assays for drug discovery. Nat. Rev. Drug Discov. 10, 221–237 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Li, J. et al. Ferroptosis: past, present and future. Cell Death Dis. 11, 88 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hangauer, M. J. et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551, 247–250 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zilka, O. et al. On the mechanism of cytoprotection by ferrostatin-1 and liproxstatin-1 and the role of lipid peroxidation in ferroptotic cell death. ACS Central Sci. 3, 232–243 (2017).

    Article  CAS  Google Scholar 

  34. Wang, B. et al. Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther. 6, 94 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johnstone, T. C., Suntharalingam, K. & Lippard, S. J. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery and Pt(IV) prodrugs. Chem. Rev. 116, 3436–3486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Galluzzi, L., Buqué, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 17, 97–111 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Kroemer, G., Galluzzi, L., Kepp, O. & Zitvogel, L. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Tao, K., Fang, M., Alroy, J. & Sahagian, G. G. Imagable 4T1 model for the study of late stage breast cancer. BMC Cancer 8, 228 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ouzounova, M. et al. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat. Commun. 8, 14979 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hunter, K. W. Jr Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  PubMed  Google Scholar 

  41. Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Farrer, N. J. et al. A potent trans‐diimine platinum anticancer complex photoactivated by visible light. Angew. Chem. Int. Ed. 49, 8905–8908 (2010).

    Article  CAS  Google Scholar 

  43. Wang, Z. et al. Phorbiplatin, a highly potent Pt(IV) antitumor prodrug that can be controllably activated by red light. Chem 5, 3151–3165 (2019).

    Article  CAS  Google Scholar 

  44. Vichai, V. & Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 1, 1112–1116 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Hong Kong Research Grants Council (grants CityU 11307419, 11304318, 11303320 and 11302221, awarded to G.Z., and 11104020 awarded to M.-L.H.), the National Natural Science Foundation of China (grants 21877092 and 22077108, awarded to G.Z.) and the Science Technology and Innovation Committee of Shenzhen Municipality (JCYJ20210324120004011 to G.Z.; JCYJ20180507181627057 to M.-L.H.) for funding support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.D. and G.Z. designed the study. Z.D. and G.Z. designed the Pt(IV) photooxidants. Z.D. and S.C. synthesized the complexes. Z.D., S.C., G.L., W.O., D. Liu., Y.Y.L., J.L., D. Lei. and G.Z. characterized the chemical and physical properties of these complexes and analysed the data. Z.D. performed in vitro experiments. Z.D. and H.L. carried out the western blotting experiments. Z.D., H.L., M.H. and G.Z. analysed the data. Z.D., H.L. and X.W. carried out the PBMC co-culture experiments. Z.D. and F.X. carried out the hypoxia experiments. P.-C.L. and G.Z. directed the hypoxia experiments. Z.D., H.L., N.W., X.W., M.Y., M.H. and G.Z. performed the in vivo experiments and analysed the data. Z.D. and G.Z. wrote the paper. All authors edited and approved the final paper.

Corresponding authors

Correspondence to Ming-Liang He or Guangyu Zhu.

Ethics declarations

Competing interests

G.Z. and Z.D. are inventors on US patent application no. 17/824,174 and Chinese patent application no. 202210706159.X submitted by the City University of Hong Kong, which covers the design, synthesis and application of the Pt(IV) photooxidants. Both patent applications have been published. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and Methods, Figs. 1–99, Tables 1–5, Uncropped and unprocessed scans of gels and blots.

Reporting Summary

Supplementary Data 1

Source data for supplementary figures.

Source data

Source Data Fig. 1

Statistical source data of Fig. 1.

Source Data Fig. 2

Unprocessed western blots and gels. Statistical source data of Fig. 2.

Source Data Fig. 3

Unprocessed western blots. Statistical source data of Fig. 3.

Source Data Fig. 4

Unprocessed western blots. Statistical source data of Fig. 4.

Source Data Fig. 5

Statistical source data of Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Li, H., Chen, S. et al. Near-infrared-activated anticancer platinum(IV) complexes directly photooxidize biomolecules in an oxygen-independent manner. Nat. Chem. 15, 930–939 (2023). https://doi.org/10.1038/s41557-023-01242-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01242-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing