Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trapping of a phenoxyl radical at a non-haem high-spin iron(II) centre

Abstract

The activation of dioxygen at haem and non-haem metal centres, and subsequent functionalization of unactivated C‒H bonds, has been a focal point of much research. In iron-mediated oxidation reactions, O2 binding at an iron(II) centre is often accompanied by an oxidation of the iron centre. Here we demonstrate dioxygen activation by sodium tetraphenylborate and protons in the presence of an iron(II) complex to form a reactive radical species, whereby the iron oxidation state remains unaltered in the presence of a highly oxidizing phenoxyl radical and O2. This complex, containing an unusual iron(II)-phenoxyl radical motif, represents an elusive example of a spectroscopically characterized oxygen-derived iron(II)-reactive intermediate during chemical and biological dioxygen activation at haem and non-haem iron active centres. The present report opens up strategies for the stabilization of a phenoxyl radical cofactor, with its full oxidizing capabilities, to act as an independent redox centre next to an iron(II) site during substrate oxidation reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reactions and complexes.
Fig. 2: Mechanistic scheme.
Fig. 3: EPR and Mössbauer characterizations of 2.
Fig. 4: rRaman spectra of 2.
Fig. 5: MCD characterization.
Fig. 6: Molecular orbitals.

Similar content being viewed by others

Data availability

Source data are provided with this paper. They include text, Excel or pdf files containing data for Figs. 3a,b, 4a and 5a–c and Extended Data Fig. 1a,b. Computed structures included in Fig. 6 and Extended Data Table 1 are attached as .xyz files. Coordinates for all structures are also present in Supplementary Information. Cube files for the MOs in Fig. 6. are included. Supplementary Information also contains all instrumental specification and additional experimental procedures. Electrochemical, EPR, NMR, ESI–MS, rRaman, SQUID and magnetic Mössbauer data are also included, together with further reactivity studies. Source data for supplementary figures and tables can be made available upon request.

References

  1. Stubbe, J. & van der Donk, W. A. Protein radicals in enzyme catalysis. Chem. Rev. 98, 705–762 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Pierpont, C. G. Progress in inorganic chemistry. Prog. Inorg. Chem. 41, 331 (1994).

    CAS  Google Scholar 

  3. Jazdzewski, B. A. & Tolman, W. B. Understanding the copper–phenoxyl radical array in galactose oxidase: contributions from synthetic modeling studies. Coord. Chem. Rev. 200-202, 633–685 (2000).

    Article  CAS  Google Scholar 

  4. Pierre, J.-L. One electron at a time oxidations and enzymatic paradigms: from metallic to non-metallic redox centers. Chem. Soc. Rev. 29, 251–257 (2000).

    Article  CAS  Google Scholar 

  5. Frey, P. A., Hegeman, A. D. & Reed, G. H. Free radical mechanisms in enzymology. Chem. Rev. 106, 3302–3316 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Sigel, H. Metalloenzymes Involving Amino Acid-Residue and Related Radicals (Dekker, 1994).

    Google Scholar 

  7. Chaudhuri, P. & Wieghardt, K. Phenoxyl radical complexes. Progress Inorg. Chem. 50, 151–216 (2001).

    Article  CAS  Google Scholar 

  8. Whittaker, J.W. in Metal Ions in Biological Systems Vol. 30 (eds Sigel, H. & Sigel, A.) 315–356 (Dekker, 1994).

  9. Whittaker, J. W. Free radical catalysis by galactose oxidase. Chem. Rev. 103, 2347–2364 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Krüger, H.-J. What can we learn from nature about the reactivity of coordinated phenoxyl radicals?—a bioinorganic success story. Angew. Chem. Int. Ed. 38, 627–631 (1999).

    Article  Google Scholar 

  11. Ray, K., Petrenko, T., Wieghardt, K. & Neese, F. Joint spectroscopic and theoretical investigations of transition metal complexes involving non-innocent ligands. Dalton Trans. 28, 1552–1566 (2007).

    Article  Google Scholar 

  12. Shimazaki, Y. Recent advances in X-ray structures of metal–phenoxyl radical complexes. Adv. Mater. Phys. Chem. 3, 60–71 (2013).

    Article  Google Scholar 

  13. DeFelippis, M. R., Murthy, C., Faraggi, M. & Klapper, M. H. Pulse radiolytic measurement of redox potentials: the tyrosine and tryptophan radicals. Biochemistry 28, 4847–4853 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Greene, B. L. et al. Ribonucleotide reductases: structure, chemistry, and metabolism suggest new therapeutic targets. Annu. Rev. Biochem. 89, 45–75 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Battistella, B. & Ray, K. O2 and H2O2 activations at dinuclear Mn and Fe active sites. Coord. Chem. Rev. 408, 213176 (2020).

    Article  CAS  Google Scholar 

  16. Ito, N. et al. Novel thioether bond revealed by a 1.7 A crystal structure of galactose oxidase. Nature 350, 87–90 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Whittaker, M. M. & Whittaker, J. W. Cu(I)-dependent biogenesis of the galactose oxidase redox cofactor. J. Biol. Chem. 278, 22090–22101 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Humphreys, K. J., Mirica, L. M., Wang, Y. & Klinman, J. P. Galactose oxidase as a model for reactivity at a copper superoxide center. JACS 131, 4657–4663 (2009).

    Article  CAS  Google Scholar 

  19. Itoh, S., Taki, M. & Fukuzumi, S. Active site models for galactose oxidase and related enzymes. Coord. Chem. Rev. 198, 3–20 (2000).

    Article  CAS  Google Scholar 

  20. Daou, M. & Faulds, C. B. Glyoxal oxidases: their nature and properties. World J. Microbiol. Biotechnol. 33, 87 (2017).

    Article  PubMed  Google Scholar 

  21. Koschorreck, K., Alpdagtas, S. & Urlacher, V. B. Copper-radical oxidases: a diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. Eng. Microbiol. 2, 100037 (2022).

    Article  CAS  Google Scholar 

  22. Whittaker, M. M., Ballou, D. P. & Whittaker, J. W. Kinetic isotope effects as probes of the mechanism of galactose oxidase. Biochemistry 37, 8426–8436 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Rokhsana, D., Howells, A. E., Dooley, D. M. & Szilagyi, R. K. Role of the Tyr–Cys cross-link to the active site properties of galactose oxidase. Inorg. Chem. 51, 3513–3524 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Vaillancourt, F. H., Bolin, J. T. & Eltis, L. D. The ins and outs of ring-cleaving dioxygenases. Crit. Rev. Biochem. Mol. Biol. 41, 241–267 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Lipscomb, J. D. Mechanism of extradiol aromatic ring-cleaving dioxygenases. Curr. Opin. Struct. Biol. 18, 644–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., Colabroy, K. L., Begley, T. P. & Ealick, S. E. Structural studies on 3-hydroxyanthranilate-3,4-dioxygenase: the catalytic mechanism of a complex oxidation involved in NAD biosynthesis. Biochemistry 44, 7632–7643 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Siegbahn, P. E. M. & Haeffner, F. Mechanism for catechol ring-cleavage by non-heme iron extradiol dioxygenases. JACS 126, 8919–8932 (2004).

    Article  CAS  Google Scholar 

  28. Deeth, R. & Bugg, T. A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases. J. Biol. Inorg. Chem. 8, 409–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Spence, E. L., Langley, G. J. & Bugg, T. D. H. Cistrans isomerization of a cyclopropyl radical trap catalyzed by extradiol catechol dioxygenases: evidence for a semiquinone intermediate. JACS 118, 8336–8343 (1996).

    Article  CAS  Google Scholar 

  30. Kovaleva, E. G. & Lipscomb, J. D. Crystal structures of Fe2+ dioxygenase superoxo, alkylperoxo, and bound product intermediates. Science 316, 453–457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimazaki Y. in PATAI’S Chemistry of Functional Groups (ed. Rappoport, Z.) (Wiley, 2012).

  32. Adam, B. et al. Phenoxyl radical complexes of gallium, scandium, iron and manganese. Chemistry 3, 308–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Hockertz, J., Steenken, S., Wieghardt, K. & Hildebrandt, P. Photo)ionization of tris(phenolato)iron(III) complexes: generation of phenoxyl radical as ligand. JACS 115, 11222–11230 (1993) .

  34. Allard, M. M. et al. Bioinspired five-coordinate iron(III) complexes for stabilization of phenoxyl radicals. Angew. Chem. Int. Ed. 51, 3178–3182 (2012).

    Article  CAS  Google Scholar 

  35. Shimazaki, Y., Tani, F., Fukui, K., Naruta, Y. & Yamauchi, O. One-electron oxidized nickel(II)–(disalicylidene)diamine complex: temperature-dependent tautomerism between Ni(III)–phenolate and Ni(II)–phenoxyl radical states. JACS 125, 10512–10513 (2003).

    Article  CAS  Google Scholar 

  36. Chaudhuri, P. et al. Biomimetic metal–radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes. Biol. Chem. 386, 1023–1033 (2005).

  37. Chun, H., Bill, E., Bothe, E., Weyhermüller, T. & Wieghardt, K. Octahedral (cis-cyclam)iron(III) complexes with O,N-coordinated o-iminosemiquinonate(1−) π radicals and o-imidophenolate(2−) anions. Inorg. Chem. 41, 5091–5099 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y., Hu, H. L., Martell, A. E. & Clearfield, A. The Fe(III) complex of N,N′,N″-tris(3-hydroxy-6 methyl-2-pyridylmethyl)-1,4,7-triazacyclononane Fe(C27H33N6O3 · C6H6 · 2H2O). J. Coord. Chem. 36, 23–31 (1995).

    Article  CAS  Google Scholar 

  39. Bren, K. L., Eisenberg, R. & Gray, H. B. Discovery of the magnetic behavior of hemoglobin: a beginning of bioinorganic chemistry. Proc. Natl Acad. Sci. USA 112, 13123–13127 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Brunori, M. Hemoglobin is an honorary enzyme. Trends Biochem. Sci 24, 158–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Ohta, T., Liu, J.-G., Nagaraju, P., Ogura, T. & Naruta, Y. A cryo-generated ferrous–superoxo porphyrin: EPR, resonance Raman and DFT studies. Chem. Commun. 51, 12407–12410 (2015).

    Article  CAS  Google Scholar 

  42. Baldwin, J. E. & Bradley, M. Isopenicillin N synthase: mechanistic studies. Chem. Rev. 90, 1079–1088 (1990).

    Article  CAS  Google Scholar 

  43. Monte Pérez, I. et al. A highly reactive oxoiron(IV) complex supported by a bioinspired N3O macrocyclic ligand. Angew. Chem. Int. Ed. 56, 14384–14388 (2017).

  44. Nishida, Y., Lee, Y.-M., Nam, W. & Fukuzumi, S. Autocatalytic formation of an iron(IV)–oxo complex via scandium ion-promoted radical chain autoxidation of an iron(II) complex with dioxygen and tetraphenylborate. JACS 136, 8042–8049 (2014).

    Article  CAS  Google Scholar 

  45. Bittner, M. M., Lindeman, S. V. & Fiedler, A. T. A synthetic model of the putative Fe(II)-iminobenzosemiquinonate intermediate in the catalytic cycle of o-aminophenol dioxygenases. JACS 134, 5460–5463 (2012).

    Article  CAS  Google Scholar 

  46. Mahabiersing, T., Luyten, H., Nieuwendam, R. & Hartl, F. Synthesis, Spectroscopy and Spectroelectrochemistry of Chlorocarbonyl {1,2-Bis[(2,6-diisopropylphenyl)imino]acenaphthene-κ2-N,N’}rhodium(I). Collect. Czech. Chem. Commun. 68, 1687–1709 (2003).

    Article  CAS  Google Scholar 

  47. Lehmann, T. E., Ming, L. J., Rosen, M. E. & Que, L. Jr. NMR studies of the paramagnetic complex Fe(II)-bleomycin. Biochemistry 36, 2807–2816 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Glaser, T. Mössbauer spectroscopy and transition metal chemistry. Fundamentals and applications. Angew. Chem. Int. Ed. 50, 10019–10020 (2011).

    Article  CAS  Google Scholar 

  49. Kass, D. et al. Stoichiometric formation of an oxoiron(IV) complex by a soluble methane monooxygenase type activation of O2 at an iron(II)-cyclam center. JACS 142, 5924–5928 (2020).

    Article  CAS  Google Scholar 

  50. Hong, S. et al. Reactivity comparison of high-valent iron(iv)-oxo complexes bearing N-tetramethylated cyclam ligands with different ring size. Dalton Trans. 42, 7842–7845 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Trinh, T. K. H. et al. Photoreduction of triplet thioxanthone derivative by azolium tetraphenylborate: a way to photogenerate N-heterocyclic carbenes. Phys. Chem. Chem. Phys. 21, 17036–17046 (2019).

    Article  CAS  PubMed  Google Scholar 

  52. Glaser, T. Mössbauer spectroscopy and transition metal chemistry. Fundamentals and applications. Angew. Chem. Int. Ed. 50, 10019–10020 (2011).

  53. Gaffney B. J. & Silverstone H. J. in EMR of Paramagnetic Molecules Vol. 13 (eds Berliner, L. J. & Reuben, J.) 1–55 (Springer US, 1993).

  54. Zhang, S. et al. Raman spectroscopy study of acetonitrile at low temperature. Spectrochim. Acta Part A 246, 119065 (2021).

    Article  CAS  Google Scholar 

  55. Monte Pérez, I. et al. A highly reactive oxoiron(IV) complex supported by a bioinspired N3O macrocyclic ligand. Angew. Chem. Int. Ed. 56, 14384–14388 (2017).

    Article  Google Scholar 

  56. Mahabiersing, T., Luyten, H., Nieuwendam, R. & Hartl, F. Synthesis, spectroscopy and spectroelectrochemistry of chlorocarbonyl {1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene-κ2-N,N′}rhodium(I). Collect. Czech. Chem. Commun. 68, 1687–1709 (2003).

    Article  CAS  Google Scholar 

  57. Frisch, M. J. et al. Gaussian 09 Revision C 01 Gaussian 09 Revis B01 (Gaussian Inc., 2009).

  58. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  59. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  60. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  61. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys. 97, 2571–2577 (1992).

    Article  Google Scholar 

  62. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

  63. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

    Article  Google Scholar 

  64. Neese, F. Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 337, 181–192 (2002).

    Article  Google Scholar 

  65. Sinnecker, S., Slep, L. D., Bill, E. & Neese, F. Performance of nonrelativistic and quasi-relativistic hybrid DFT for the prediction of electric and magnetic hyperfine parameters in 57Fe Mössbauer spectra. Inorg. Chem. 44, 2245–2254 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Römelt, M., Ye, S. & Neese, F. Calibration of modern density functional theory methods for the prediction of 57Fe Mössbauer isomer shifts: meta-GGA and double-hybrid functionals. Inorg. Chem. 48, 784–785 (2009).

    Article  PubMed  Google Scholar 

  67. Hanwell, M. D. et al. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 4, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhurko, G. A. Chemcraft—graphical program for visualization of quantum chemistry computations. ChemCraft https://chemcraftprog.com (2005).

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG) (1) under Germany’s Excellence Strategy—EXC 2008-390540038—UniSysCat. (to K.R. and P.H.) and (2) via a Heisenberg-Professorship (to K.R.), Alexander von Humboldt Foundation and COST-STSM-CM1305-39979 to T.C., and the National Science Foundation (CHE-1900380 to N.L.). V.A.L. acknowledges support from a University of Michigan Rackham Predoctoral Fellowship. T.L. is also grateful to DFG for support under Project No. LO 2898/1-1. We also thank W. Browne (University of Groningen), G. Rajaraman (Indian Institute of Technology, Mumbai), M. Swart (University of Girona), A. Schnegg (Max Planck Institute for Chemical Energy Conversion, Mulheim an der Ruhr, Germany), A. R.-Rivera (University of Girona) and R. Kumar (Indian Institute of Technology, Mumbai) for valuable suggestions.

Author information

Authors and Affiliations

Authors

Contributions

K.R. and N.L. conceived the project; D.K., V.A.L. and T.C. performed all the experiments. V.A.L. and N.L. performed the computational studies, and MCD measurements. U.K., P.H., V.A.L. and N.L. performed rRaman measurements. T.L. and E.B. performed EPR. E.B. performed SQUID and magnetic Mössbauer studies. All authors contributed to data analysis. D.K., T.C., K.R., T.L., V.A.L., P.H. and N.L. wrote the manuscript.

Corresponding authors

Correspondence to Nicolai Lehnert or Kallol Ray.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Thomas Brunold and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Spectral changes associated with the formation of 2, 2a and 2b.

a, UV/Vis spectral changes associated with the formation of 2 (bold line) starting from 1 (dashed line) by addition of excess O2, NaBPh4 (1.3 eq) and HClO4 (0.5 eq) in CH3CN at 0°C. Inset: Time traces for the formation of 2 with different amounts of ferrocene (Fc) showing a sigmoidal feature with an increase of the induction time with increasing amount of Fc. b, Comparison of the UV/vis spectra of 2 (black), 2a (dotted) and 2b (dashed) Inset: time traces of the decay of the characteristic ~660 nm band associated with 2, 2a and 2b at 10 °C.

Source data

Extended Data Table 1 Theoretical Calculations

Supplementary information

Supplementary Information

Supplementary Figs. 1–36 and Tables 1–19.

Source data

Source Data Fig. 3

Excel file for the measured EPR and pdf file for the measured Mössbauer data and simulation.

Source Data Fig. 4

Excel file with the measured 16O and 18O rRaman data.

Source Data Fig. 5

Excel file with the MCD data and the simulations.

Source Data Fig. 6

All the cube files are included as a zip folder.

Source Data Extended Data Fig. 1

Excel file for all the measured data.

Source Data Extended Data Table 1

.xyz files of all structures are included in the zip folder.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kass, D., Larson, V.A., Corona, T. et al. Trapping of a phenoxyl radical at a non-haem high-spin iron(II) centre. Nat. Chem. 16, 658–665 (2024). https://doi.org/10.1038/s41557-023-01405-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01405-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing