Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anions featuring an aluminium–silicon core with alumanyl silanide and aluminata-silene characteristics

Subjects

Abstract

Molecular species containing multiple bonds to aluminium have long been challenging synthetic targets. Despite recent landmark discoveries in this area, heterodinuclear Al–E multiple bonds (where E is a group-14 element) have remained rare and limited to highly polarized π-interactions (Al=E ↔ +Al–E). Here we report the isolation of three alumanyl silanide anions that feature an Al–Si core stabilized by bulky substituents and a Si–Na interaction. Single-crystal X-ray diffraction studies, spectroscopic analysis and density functional theory calculations show that the Al–Si interaction possesses partial double bond character. Preliminary reactivity studies support this description of the compounds through two resonance structures: one that displays a predominant nucleophilic character of the sodium-coordinated silicon centre in the Al–Si core, as shown by silanide-like reactivity towards halosilane electrophiles and the CH-insertion of phenylacetylene. Moreover, we report an alumanyl silanide with a sequestered sodium cation. Cleavage of the Si–Na bond by [2.2.2]cryptand increases the double bond character of the Al–Si core to produce an anion with high aluminata-silene (Al=Si) character.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected examples of isolable and proposed multiple-bonded group-13/14 complexes.
Fig. 2: Synthesis of donor-stabilized alumanyl silanides.
Fig. 3: Molecular structures of 5·Na·(15-c-5), 5·Na·IiPr, and [5] (from Na·crypt[5]) in the solid state, as derived from single-crystal XRD.
Fig. 4: Reactivity of DME-stabilized alumanyl silanide and molecular structures of the reaction products [6] and 7.
Fig. 5: Bonding analysis of 4·NMe3, 5·Na·(15-c-5), [5] and calculated analogue aluminium silicon compounds including a comparison of the highest occupied molecular orbitals of 5·Na·(15-c-5), [5] and alumasilene HAl=SiH2.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published Article and its Supplementary Information files. The structures of compounds 2·IMes, 3·NMe3, 4·NMe3, 5·Na·(15-c-5), 5·Na·IiPr, Na·crypt[5], Na·(DME)3[6] and 7 were determined by single-crystal XRD. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2170414 (2·IMes), 2170415 (3·NMe3), 2170416 (4·NMe3), 2170417 (5·Na·(15-c-5)), 2170418 (5·Na·IiPr), 2170419 (Na·crypt[5]), 2170420 (Na·(DME)3[6]) and 2170421 (7). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The Cartesian coordinates of all optimized and calculated structures as well as electronic energies are summarized in the supplementary document ‘calculated structures.txt’. The files comprise all necessary data for reproducing the values. All non-default parameters for the computational studies are given in the Supplementary Information together with the corresponding references of the methods used. Further details are provided in the Supplementary Information.

References

  1. Bag, P., Weetman, C. & Inoue, S. Experimental realisation of elusive multiple-bonded aluminium compounds: a new horizon in aluminium chemistry. Angew. Chem. Int. Ed. 57, 14394–14413 (2018).

    Article  CAS  Google Scholar 

  2. Shan, C., Yao, S. & Driess, M. Where silylene-silicon centres matter in the activation of small molecules. Chem. Soc. Rev. 49, 6733–6754 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Chu, T. & Nikonov, G. I. Oxidative addition and reductive elimination at main-group element centers. Chem. Rev. 118, 3608–3680 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Weetman, C. & Inoue, S. The road travelled: after main‐group elements as transition metals. ChemCatChem 10, 4213–4228 (2018).

    Article  CAS  Google Scholar 

  6. West, R., Fink, M. J. & Michl, J. Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214, 1343–1344 (1981).

    Article  CAS  PubMed  Google Scholar 

  7. Kira, M. Bonding and structure of disilenes and related unsaturated group-14 element compounds. Proc. Jpn Acad. B 88, 167–191 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuo, T. & Hayakawa, N. π-Electron systems containing Si=Si double bonds. Sci. Technol. Adv. Mater. 19, 108–129 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rammo, A. & Scheschkewitz, D. Functional disilenes in synthesis. Chem. Eur. J. 24, 6866–6885 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Bag, P., Porzelt, A., Altmann, P. J. & Inoue, S. A stable neutral compound with an aluminum-aluminum double bond. J. Am. Chem. Soc. 139, 14384–14387 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Falconer, R. L., Byrne, K. M., Nichol, G. S., Krämer, T. & Cowley, M. J. Reversible dissociation of a dialumene*. Angew. Chem. Int. Ed. 60, 24702–24708 (2021).

    Article  CAS  Google Scholar 

  12. Weetman, C., Porzelt, A., Bag, P., Hanusch, F. & Inoue, S. Dialumenes - aryl vs. silyl stabilisation for small molecule activation and catalysis. Chem. Sci. 11, 4817–4827 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allred, A. L. Electronegativity values from thermochemical data. J. Inorg. Nucl. Chem. 17, 215–221 (1961).

    Article  CAS  Google Scholar 

  14. Palagyi, Z., Grev, R. S. & Schaefer, H. F. Striking similarities between elementary silicon and aluminum compounds: monobridged, dibridged, trans-bent, and vinylidene isomers of aluminum hydride (Al2H2). J. Am. Chem. Soc. 115, 1936–1943 (1993).

    Article  CAS  Google Scholar 

  15. Kysliak, O., Görls, H. & Kretschmer, R. Cooperative bond activation by a bimetallic main-group complex. J. Am. Chem. Soc. 143, 142–148 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Gil-Negrete, J. M. & Hevia, E. Main group bimetallic partnerships for cooperative catalysis. Chem. Sci. 12, 1982–1992 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Uhl, W., Vester, A., Kaim, W. & Poppe, J. Dialan-Radikalanionen [R2Al-AlR2]. J. Organomet. Chem. 454, 9–13 (1993).

    Article  CAS  Google Scholar 

  18. Pluta, C., Pörschke, K.-R., Krüger, C. & Hildenbrand, K. An Al–Al one-electron π bond. Angew. Chem. Int. Ed. 32, 388–390 (1993).

    Article  Google Scholar 

  19. Wright, R. J., Brynda, M. & Power, P. P. Synthesis and structure of the “dialuminyne” Na2[Ar’AlAlAr’] and Na2[(Ar“Al)3]: Al-Al bonding in Al2Na2 and Al3Na2 clusters. Angew. Chem. Int. Ed. 45, 5953–5956 (2006).

    Article  CAS  Google Scholar 

  20. Franz, D. & Inoue, S. Advances in the development of complexes that contain a group 13 element chalcogen multiple bond. Dalton Trans. 45, 9385–9397 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Chu, T., Vyboishchikov, S. F., Gabidullin, B. & Nikonov, G. I. Oxidative cleavage of C=S and P=S bonds at an AlI center: preparation of terminally bound aluminum sulfides. Angew. Chem. Int. Ed. 55, 13306–13311 (2016).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Synthesis, structure, and reactivity of a monomeric iminoalane. Chem. Eur. J. 18, 15263–15266 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Synthesis, structure and reaction chemistry of a nucleophilic aluminyl anion. Nature 557, 92–95 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. The aluminyl anion: a new generation of aluminium nucleophile. Angew. Chem. Int. Ed. 60, 1702–1713 (2021).

    Article  CAS  Google Scholar 

  25. Anker, M. D. & Coles, M. P. Aluminium‐mediated carbon dioxide reduction by an isolated monoalumoxane anion. Angew. Chem. 131, 18429–18433 (2019).

    Article  Google Scholar 

  26. Anker, M. D. & Coles, M. P. Isoelectronic aluminium analogues of carbonyl and dioxirane moieties. Angew. Chem. Int. Ed. 58, 13452–13455 (2019).

    Article  CAS  Google Scholar 

  27. Anker, M. D., Schwamm, R. J. & Coles, M. P. Synthesis and reactivity of a terminal aluminium-imide bond. Chem. Commun. 56, 2288–2291 (2020).

    Article  Google Scholar 

  28. Evans, M. J., Anker, M. D., McMullin, C. L., Rajabi, N. A. & Coles, M. P. Double insertion of CO2 into an Al-Te multiple bond. Chem. Commun. 57, 2673–2676 (2021).

    Article  CAS  Google Scholar 

  29. Evans, M. J. et al. Carbon-chalcogen bond formation initiated by [Al(NONDipp)(E)]- anions containing Al-E{16} (E{16} = S, Se) multiple bonds. Chem. Sci. 13, 4635–4646 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heilmann, A., Hicks, J., Vasko, P., Goicoechea, J. M. & Aldridge, S. Carbon monoxide activation by a molecular aluminium imide: C–O bond cleavage and C–C bond formation. Angew. Chem. Int. Ed. 59, 4897–4901 (2020).

    Article  CAS  Google Scholar 

  31. Hicks, J., Heilmann, A., Vasko, P., Goicoechea, J. M. & Aldridge, S. Trapping and reactivity of a molecular aluminium oxide ion. Angew. Chem. Int. Ed. 58, 17265–17268 (2019).

    Article  CAS  Google Scholar 

  32. Queen, J. D., Irvankoski, S., Fettinger, J. C., Tuononen, H. M. & Power, P. P. A monomeric aluminum imide (iminoalane) with Al–N triple-bonding: bonding analysis and dispersion energy stabilization. J. Am. Chem. Soc. 143, 6351–6356 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hofmann, A., Légaré, M.-A., Wüst, L. & Braunschweig, H. Heterodiatomic multiple bonding in group 13: A complex with a boron-aluminium π bond reduces CO2. Angew. Chem. Int. Ed. 58, 9776–9781 (2019).

    Article  CAS  Google Scholar 

  34. Fischer, M. et al. Isolable Phopha- and arsaalumenes. J. Am. Chem. Soc. 143, 4106–4111 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Schleyer, P. V. R. & Kost, D. A comparison of the energies of double bonds of second-row elements with carbon and silicon. J. Am. Chem. Soc. 110, 2105–2109 (1988).

    Article  CAS  Google Scholar 

  36. Sakai, S. A theoretical investigation of Ziegler-Natta polymerization reaction mechanisms of acetylene. J. Phys. Chem. 95, 7089–7093 (1991).

    Article  CAS  Google Scholar 

  37. Yan, C. & Kinjo, R. A three-membered diazo-aluminum heterocycle to access an Al=C π bonding species. Angew. Chem. Int. Ed. 61, e202211800 (2022).

    Article  CAS  Google Scholar 

  38. Pelter, A., Singaram, B., Warren, L. & Wilson, J. W. Hindered organoboron groups in organic chemistry. 18. The production of boron stabilised carbanions. Tetrahedron 49, 2965–2978 (1993).

    Article  CAS  Google Scholar 

  39. Maza, R. J., Carbó, J. J. & Fernández, E. Borata‐alkene species as nucleophilic reservoir. Adv. Synth. Catal. 363, 2274–2289 (2021).

    Article  CAS  Google Scholar 

  40. Cuenca, A. B. & Fernández, E. Boron-Wittig olefination with gem-bis(boryl)alkanes. Chem. Soc. Rev. 50, 72–86 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Agarwal, A. & Bose, S. K. Bonding relationship between silicon and germanium with group 13 and heavier elements of groups 14–16. Chem. Asian J. 15, 3784–3806 (2020).

    Article  CAS  PubMed  Google Scholar 

  42. Suzuki, Y., Ishida, S., Sato, S., Isobe, H. & Iwamoto, T. An isolable potassium salt of a borasilene-chloride adduct. Angew. Chem. Int. Ed. 56, 4593–4597 (2017).

    Article  CAS  Google Scholar 

  43. Nakata, N. & Sekiguchi, A. A stable silaborene: synthesis and characterization. J. Am. Chem. Soc. 128, 422–423 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Kajiwara, T., Takeda, N., Sasamori, T. & Tokitoh, N. Synthesis of alkali metal salts of borylsilyl anions utilizing highly crowded silylboranes and their properties. Organometallics 27, 880–893 (2008).

    Article  CAS  Google Scholar 

  45. Wendel, D. et al. Silicon and oxygen’s bond of affection: an acyclic three-coordinate silanone and its transformation to an iminosiloxysilylene. J. Am. Chem. Soc. 139, 17193–17198 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Wiberg, N. et al. Supersilylsilane R*SiX3: Darstellung, Charakterisierung und Strukturen; sterische und van-der-Waals Effekte der Substituenten X [1] / Supersilylsilanes R*SiX3: Syntheses, characterization and structures; steric and van-der-Waals effects of substituents X [1]. Z. Naturforsch. B 55, 389–405 (2000).

    Article  CAS  Google Scholar 

  47. Wiberg, N. et al. Disupersilylsilane R*2, Disupersilyldisilane R*2XSi-SiX3 und Tetrasupersilyltetrasilane R*2XSi-SiX2-SiX2-SiXR*2. Z. Anorg. Allg. Chem. 627, 594–606 (2001).

    Article  CAS  Google Scholar 

  48. Sekiguchi, A., Fukawa, T., Nakamoto, M., Lee, V. Y. & Ichinohe, M. Isolable silyl and germyl radicals lacking conjugation with pi-bonds: synthesis, characterization, and reactivity. J. Am. Chem. Soc. 124, 9865–9869 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Sänger, I. et al. The inverse sandwich complex (K(18-crown-6))2CpCpFe(CO)2 -unpredictable redox reactions of [CpFe(CO)2]I with the silanides Na[SiRtBu2] (R = Me, tBu) and the isoelectronic phosphanyl borohydride K[PtBu2BH3]. Dalton Trans. 41, 6671–6676 (2012).

    Article  PubMed  Google Scholar 

  50. Klinkhammer, K. W. Tris(trimethylsilyl)silanides of the heavier alkali metals—a structural study. Chem. Eur. J. 3, 1418–1431 (1997).

    Article  CAS  Google Scholar 

  51. Lerner, H.-W., Scholz, S. & Bolte, M. Synthese, Struktur und Eigenschaften des Natriumsilanids tBu2PhSiNa - ein Zugang zu Di-tert-butyl-phenylsilylsubstituierten Verbindungen. Z. Anorg. Allg. Chem. 627, 1638–1642 (2001).

    Article  CAS  Google Scholar 

  52. Engesser, T. A., Lichtenthaler, M. R., Schleep, M. & Krossing, I. Reactive p-block cations stabilized by weakly coordinating anions. Chem. Soc. Rev. 45, 789–899 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Nakamoto, M., Shimizu, K. & Sekiguchi, A. Two-coordinate group 13 element (Al, Ga) centered cations formed by silyl group migration: synthesis and characterization. Chem. Lett. 36, 984–985 (2007).

    Article  CAS  Google Scholar 

  54. Wochele, R., Schwarz, W., Klinkhammer, K. W., Locke, K. & Weidlein, J. Neue Hypersilanide der Erdmetalle Aluminium, Gallium und Indium. Z. Anorg. Allg. Chem. 626, 1963–1973 (2000).

    Article  CAS  Google Scholar 

  55. Wiberg, N., Blank, T., Kaim, W., Schwederski, B. & Linti, G. Tri(supersilyl)dialanyl (tBu3Si)3Al2 and tetra(supersilyl)cyclotrialanyl (tBu3Si)4Al3 − new stable radicals of a group 13 element from thermolysis of (tBu3Si)4Al2. Eur. J. Inorg. Chem. 2000, 1475–1481 (2000).

    Article  Google Scholar 

  56. Wiberg, N. et al. Supersilyltrielane RnEHal3–n (E = Triel, R = SitBu3): Synthesen, Charakterisierung, Reaktionen, Strukturen [1] / Supersilyltrielanes RnEHal3–n (E = Triel, R = SitBu3): syntheses, characterization, reactions, structures [1]. Z. Naturforsch. B 56, 634–651 (2001).

    Article  CAS  Google Scholar 

  57. Hill, M. S., Kociok-Köhn, G. & MacDougall, D. J. N-Heterocyclic carbenes and charge separation in heterometallic s-block silylamides. Inorg. Chem. 50, 5234–5241 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Su, J., Li, X.-W., Crittendon, R. C. & Robinson, G. H. How short is a -GaGa- triple bond? synthesis and molecular structure of Na2[Mes*2C6H3-GaGa-C6H3Mes*2] (Mes* = 2,4,6-i-Pr3C6H2): the first gallyne. J. Am. Chem. Soc. 119, 5471–5472 (1997).

  59. López, C. S., Nieto Faza, O., Cossío, F. P., York, D. M. & de Lera, A. R. Ellipticity: a convenient tool to characterize electrocyclic reactions. Chem. Eur. J. 11, 1734–1738 (2005).

    Article  PubMed  Google Scholar 

  60. Cabeza, J. A., van der Maelen, J. F. & García-Granda, S. Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)23-MeImCH)(CO)9] (Me2Im = 1,3-dimethylimidazol-2-ylidene). Organometallics 28, 3666–3672 (2009).

  61. Shaik, S., Danovich, D., Wu, W. & Hiberty, P. C. Charge-shift bonding and its manifestations in chemistry. Nat. Chem. 1, 443–449 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Popelier, P. On the full topology of the Laplacian of the electron density. Coord. Chem. Rev. 197, 169–189 (2000).

    Article  CAS  Google Scholar 

  63. Power, P. P. An update on multiple bonding between heavier main group elements: the importance of Pauli repulsion, charge-shift character, and London dispersion force effects. Organometallics 39, 4127–4138 (2020).

    Article  CAS  Google Scholar 

  64. Yanagisawa, T., Mizuhata, Y. & Tokitoh, N. Syntheses and structures of novel λ33-phosphanylalumanes fully bearing carbon substituents and their substituent effects. Inorganics 7, 132 (2019).

    Article  CAS  Google Scholar 

  65. Kuhn, N. & Kratz, T. Synthesis of imidazol-2-ylidenes by reduction of imidazole-2-(3H)-thiones. Synthesis 1993, 561–562 (1993).

    Article  Google Scholar 

  66. Arduengo, A. J., Dias, H. V. R., Harlow, R. L. & Kline, M. Electronic stabilization of nucleophilic carbenes. J. Am. Chem. Soc. 114, 5530–5534 (1992).

    Article  CAS  Google Scholar 

  67. APEX 3 v.2015.5-2 (Bruker AXS, 2015).

  68. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2017).

  69. Becke, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  70. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  71. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Article  Google Scholar 

  72. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 356, 98–109 (2009).

  74. Caldeweyher, E. et al. A generally applicable atomic-charge dependent London dispersion correction. J. Chem. Phys. 150, 154122 (2019).

    Article  PubMed  Google Scholar 

  75. Caldeweyher, E., Bannwarth, C. & Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 147, 34112 (2017).

    Article  Google Scholar 

  76. Cossi, M., Rega, N., Scalmani, G. & Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comp. Chem. 24, 669–681 (2003).

    Article  CAS  Google Scholar 

  77. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Chem. Phys. A 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  78. Ishida, K., Morokuma, K. & Komornicki, A. The intrinsic reaction coordinate. An ab initio calculation for HNC → HCN and H + CH4 → CH4 + H. J. Chem. Phys. 66, 2153–2156 (1977).

    Article  CAS  Google Scholar 

  79. Riplinger, C., Sandhoefer, B., Hansen, A. & Neese, F. Natural triple excitations in local coupled cluster calculations with pair natural orbitals. J. Chem. Phys. 139, 134101 (2013).

    Article  PubMed  Google Scholar 

  80. Pople, J. A., Head-Gordon, M. & Raghavachari, K. Quadratic configuration interaction. A general technique for determining electron correlation energies. J. Chem. Phys. 87, 5968 (1987).

    Article  CAS  Google Scholar 

  81. Schreckenbach, G. & Ziegler, T. Calculation of NMR shielding tensors using gauge-including atomic orbitals and modern density functional theory. J. Chem. Phys. 99, 606–611 (1995).

    Article  CAS  Google Scholar 

  82. Gese, A. et al. Toward a 1,4-diphosphinine-based molecular CPS-ternary compound. Inorg. Chem. 60, 13029–13040 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge K. Kollmannsberger (R. A. Fischer) for the IR measurements. We thank R. Ebner for assistance with initial reactivity studies and M. Roy for proofreading. A.E.F. thanks the Servicio de Cálculo Científico at the University of Murcia for technical support and computational resources used. The authors are grateful to the European Research Council (ALLOWE101001591) for financial support. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and D.F. conceived and performed the synthetic experiments and analysed the data. A.E.F. designed and performed the theoretical analyses. M.B. and F.H. solved and revised the XRD data. S.I. conceived and supervised the project. M.L., D.F. and S.I. wrote the manuscript with input and critical revision from all authors.

Corresponding author

Correspondence to Shigeyoshi Inoue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks David Scheschkewitz, Petra Vasko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–69, Tables 1–6, synthetic procedures for all compounds, crystallographic and computational details.

Supplementary Data 1

Crystallographic data for compound IMes, CCDC 2170414.

Supplementary Data 2

Crystallographic data for compound 3·NMe3, CCDC 2170415.

Supplementary Data 3

Crystallographic data for compound 4·NMe3, CCDC 2170416.

Supplementary Data 4

Crystallographic data for compound 5·Na(15-c-5), CCDC 2170417.

Supplementary Data 5

Crystallographic data for compound 5·NaIiPr, CCDC 2170418.

Supplementary Data 6

Crystallographic data for compound Na·crypt[5], CCDC 2170419.

Supplementary Data 7

Crystallographic data for compound Na·(DME)3[6], CCDC 2170420.

Supplementary Data 8

Crystallographic data for compound 7, CCDC 2170421.

Supplementary Data 9

Source data for Supplementary Fig. 67.

Supplementary Data 10

Cartesian coordinates of optimized and calculated structures, electronic energies for calculated structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, M., Franz, D., Espinosa Ferao, A. et al. Anions featuring an aluminium–silicon core with alumanyl silanide and aluminata-silene characteristics. Nat. Chem. 15, 1452–1460 (2023). https://doi.org/10.1038/s41557-023-01265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01265-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing