Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics

Abstract

The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au25(SR)18] NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise. Experimental characterization supported by theoretical modelling shows that the rod-like crystals consist of polymeric chains in which Au25 NPs are held together by a linear SR–[Au(I)–SR]4 interparticle linker. This linker is formed by conjugation of two dynamically detached SR–[Au(I)–SR]2 protecting motifs from adjacent Au25 particles, and is stabilized by a combination of CHπ and ion-pairing interactions between tetraethylammonium cations and SR ligands. The symmetry, morphology and size of the resulting supercrystals can be systematically tuned by changing the concentration and type of the tetraalkylammonium cations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystallization of [Au25(p-MBA)18] NPs into hexagonal rod-like supercrystals.
Fig. 2: Packing structure determination of hexagonal rod-like supercrystals.
Fig. 3: Crystallization habit of [Au25(p-MBA)18] NPs in the presence of various ratios of tetraalkylammonium and lithium cations.
Fig. 4: Characterization of the supercrystals’ building blocks.
Fig. 5: Effects of tetraalkylammonium cations on the stability of [Au25(p-MBA)18] dimer.
Fig. 6: Shaping supercrystals into truncated rhomboid flakes.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available with the manuscript files and/or from the corresponding authors upon reasonable request. Source data are provided in the Source Data or Supplementary Data files. Extensive DFT and MD calculations have been performed to illustrate the structure of Au25 NP supercrystals, which generated hundreds of raw data files. The results have been summarized in the main and supplementary figures. Due to the large number of raw simulation files, these are not provided with the supporting material but are available from the authors on request. Source data are provided with this paper.

References

  1. Zhang, C. et al. A general approach to DNA-programmable atom equivalents. Nat. Mater. 12, 741–746 (2013).

    Article  CAS  Google Scholar 

  2. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  Google Scholar 

  3. Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J. & Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354, 1580–1584 (2016).

    Article  CAS  Google Scholar 

  4. Huang, R.-W. et al. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal–organic framework. Nat. Chem. 9, 689–697 (2017).

    Article  CAS  Google Scholar 

  5. Takano, S. & Tsukuda, T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: design principles and synthesis challenges. J. Am. Chem. Soc. 143, 1683–1698 (2021).

    Article  CAS  Google Scholar 

  6. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    Article  CAS  Google Scholar 

  7. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    Article  CAS  Google Scholar 

  8. De Nardi, M. et al. Gold nanowired: a linear (Au25)n polymer from Au25 molecular clusters. ACS Nano 8, 8505–8512 (2014).

    Article  Google Scholar 

  9. Zhao, M. et al. Ambient chemical fixation of CO2 using a robust Ag27 cluster-based two-dimensional metal–organic framework. Angew. Chem. Int. Ed. 59, 20031–20036 (2020).

    Article  CAS  Google Scholar 

  10. Ross, M. B., Ku, J. C., Vaccarezza, V. M., Schatz, G. C. & Mirkin, C. A. Nanoscale form dictates mesoscale function in plasmonic DNA–nanoparticle superlattices. Nat. Nanotechnol. 10, 453–458 (2015).

    Article  CAS  Google Scholar 

  11. Huang, J.-H., Wang, Z.-Y., Zang, S.-Q. & Mak, T. C. W. Spontaneous resolution of chiral multi-thiolate-protected Ag30 nanoclusters. ACS Cent. Sci. 6, 1971–1976 (2020).

    Article  CAS  Google Scholar 

  12. Chen, T. et al. Crystallization-induced emission enhancement: a novel fluorescent Au–Ag bimetallic nanocluster with precise atomic structure. Sci. Adv. 3, e1700956 (2017).

    Article  Google Scholar 

  13. Bodnarchuk, M. I., Kovalenko, M. V., Heiss, W. & Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor. J. Am. Chem. Soc. 132, 11967–11977 (2010).

    Article  CAS  Google Scholar 

  14. Hossain, S. et al. Understanding and designing one-dimensional assemblies of ligand-protected metal nanoclusters. Mater. Horiz. 7, 796–803 (2020).

    Article  CAS  Google Scholar 

  15. Desireddy, A. et al. Ultrastable silver nanoparticles. Nature 501, 399–402 (2013).

    Article  CAS  Google Scholar 

  16. Tian, Y. et al. Lattice engineering through nanoparticle–DNA frameworks. Nat. Mater. 15, 654–661 (2016).

    Article  CAS  Google Scholar 

  17. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Article  Google Scholar 

  18. Cao, Y. et al. Reversible isomerization of metal nanoclusters induced by intermolecular interaction. Chem 7, 2227–2244 (2021).

    Article  CAS  Google Scholar 

  19. Zheng, K., Fung, V., Yuan, X., Jiang, D.-E. & Xie, J. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 141, 18977–18983 (2019).

    Article  CAS  Google Scholar 

  20. Salassa, G., Sels, A., Mancin, F. & Bürgi, T. Dynamic nature of thiolate monolayer in Au25(SR)18 nanoclusters. ACS Nano 11, 12609–12614 (2017).

    Article  CAS  Google Scholar 

  21. Barrabés, N., Zhang, B. & Bürgi, T. Racemization of chiral Pd2Au36(SC2H4Ph)24: doping increases the flexibility of the cluster surface. J. Am. Chem. Soc. 136, 14361–14364 (2014).

    Article  Google Scholar 

  22. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  Google Scholar 

  23. Chakraborty, I. & Pradeep, T. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117, 8208–8271 (2017).

    Article  CAS  Google Scholar 

  24. Li, Y. et al. Double-helical assembly of heterodimeric nanoclusters into supercrystals. Nature 594, 380–384 (2021).

    Article  CAS  Google Scholar 

  25. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2008).

    Article  CAS  Google Scholar 

  26. Lopez-Acevedo, O., Kacprzak, K. A., Akola, J. & Häkkinen, H. Quantum size effects in ambient CO oxidation catalysed by ligand-protected gold clusters. Nat. Chem. 2, 329–334 (2010).

    Article  CAS  Google Scholar 

  27. Liao, L. et al. An unprecedented kernel growth mode and layer-number-odevity-dependent properties in gold nanoclusters. Angew. Chem. Int. Ed. 59, 731–734 (2020).

    Article  CAS  Google Scholar 

  28. Wu, Z. et al. Unraveling the impact of gold(I)–thiolate motifs on the aggregation-induced emission of gold nanoclusters. Angew. Chem. Int. Ed. 59, 9934–9939 (2020).

    Article  CAS  Google Scholar 

  29. Zheng, J., Nicovich, P. R. & Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem. 58, 409–431 (2007).

    Article  CAS  Google Scholar 

  30. Dolamic, I., Knoppe, S., Dass, A. & Bürgi, T. First enantioseparation and circular dichroism spectra of Au38 clusters protected by achiral ligands. Nat. Commun. 3, 798 (2012).

    Article  Google Scholar 

  31. Yao, Q. et al. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 8, 927 (2017).

    Article  Google Scholar 

  32. Yao, Q. et al. Counterion-assisted shaping of nanocluster supracrystals. Angew. Chem. Int. Ed. 54, 184–189 (2015).

    Article  CAS  Google Scholar 

  33. Zhang, D. et al. Atomic-resolution transmission electron microscopy of electron beam–sensitive crystalline materials. Science 359, 675–679 (2018).

    Article  CAS  Google Scholar 

  34. Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    Article  CAS  Google Scholar 

  35. Heaven, M. W., Dass, A., White, P. S., Holt, K. M. & Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130, 3754–3755 (2008).

    Article  CAS  Google Scholar 

  36. Matus, M. F., Malola, S., Kinder Bonilla, E., Barngrover, B. M., Aikens, C. M., & Häkkinen, H. A. A topological isomer of the Au25(SR)18 nanocluster. Chem. Commun. 56, 8087–8090 (2020).

    Article  CAS  Google Scholar 

  37. Kalenius, E. et al. Experimental confirmation of a topological isomer of the ubiquitous Au25(SR)18 cluster in the gas phase. J. Am. Chem. Soc. 143, 1273–1277 (2021).

    Article  CAS  Google Scholar 

  38. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  Google Scholar 

  39. Wang, Z. & Simoncelli, E. P. Translation insensitive image similarity in complex wavelet domain. In: Proceedings ICASSP ’05. IEEE International Conference on Acoustics, Speech, and Signal Processing 2005, Vol. 2, 573–576 (IEEE, 2005).

  40. Häkkinen, H., Walter, M. & Grönbeck, H. Divide and protect: capping gold nanoclusters with molecular gold−thiolate rings. J. Phys. Chem. B 110, 9927–9931 (2006).

    Article  Google Scholar 

  41. Price, R. C. & Whetten, R. L. Raman spectroscopy of benzenethiolates on nanometer-scale gold clusters. J. Phys. Chem. B 110, 22166–22171 (2006).

    Article  CAS  Google Scholar 

  42. Baksi, A., Chakraborty, P., Bhat, S., Natarajan, G. & Pradeep, T. [Au25(SR)18]22−: a noble metal cluster dimer in the gas phase. Chem. Commun. 52, 8397–8400 (2016).

    Article  CAS  Google Scholar 

  43. Yuan, P. et al. Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials. Nat. Commun. 11, 2229 (2020).

    Article  CAS  Google Scholar 

  44. Lahtinen, T. et al. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au~250(p-MBA)n. Nanoscale 8, 18665–18674 (2016).

    Article  CAS  Google Scholar 

  45. Liu, X. et al. Ag2Au50(PET)36 nanocluster: dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem. Int. Ed. 59, 13941–13946 (2020).

    Article  CAS  Google Scholar 

  46. Wen, Z.-R., Guan, Z.-J., Zhang, Y., Lin, Y.-M. & Wang, Q.-M. [Au7Ag9(dppf)3(CF3CO2)7BF4]n: a linear nanocluster polymer from molecular Au7Ag8 clusters covalently linked by silver atoms. Chem. Commun. 55, 12992–12995 (2019).

    Article  CAS  Google Scholar 

  47. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231 (2018).

    Article  CAS  Google Scholar 

  48. Bao, W. et al. Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation. Nat. Commun. 5, 4224 (2014).

    Article  CAS  Google Scholar 

  49. Huang, R.-W. et al. [Cu81(PhS)46(tBuNH2)10(H)32]3+ reveals the coexistence of large planar cores and hemispherical shells in high-nuclearity copper nanoclusters. J. Am. Chem. Soc. 142, 8696–8705 (2020).

    Article  Google Scholar 

  50. Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005).

    Article  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  52. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  Google Scholar 

  53. GROMACS 2019. https://www.gromacs.org/

  54. Pohjolainen, E., Chen, X., Malola, S., Groenhof, G. & Häkkinen, H. A unified AMBER-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theory Comput. 12, 1342–1350 (2016).

    Article  CAS  Google Scholar 

  55. Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct. Funct. Bioinforma. 78, 1950–1958 (2010).

    Article  CAS  Google Scholar 

  56. Bayly, C. I., Cieplak, P., Cornell, W. & Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J. Phys. Chem. 97, 10269–10280 (1993).

    Article  CAS  Google Scholar 

  57. Singh, U. C. & Kollman, P. A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 5, 129–145 (1984).

    Article  CAS  Google Scholar 

  58. Besler, B. H., Merz, K. M. Jr. & Kollman, P. A. Atomic charges derived from semiempirical methods. J. Comput. Chem. 11, 431–439 (1990).

    Article  CAS  Google Scholar 

  59. Frisch, M. J. et al. Gaussian 09, revision E.01 (Gaussian, Inc., Wallingford CT, 2013).

  60. Case, D. A. et al. AMBER 12 (University of California, San Francisco, 2012).

  61. Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).

    Article  CAS  Google Scholar 

  62. Koivisto, J. et al. Acid–base properties and surface charge distribution of the water-soluble Au102(pMBA)44 nanocluster. J. Phys. Chem. C 120, 10041–10050 (2016).

    Article  CAS  Google Scholar 

  63. Miyamoto, S. & Kollman, P. A. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    Article  CAS  Google Scholar 

  64. Bussi, G. & Parrinello, M. Stochastic thermostats: comparison of local and global schemes. Comput. Phys. Commun. 179, 26–29 (2008).

    Article  CAS  Google Scholar 

  65. Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    Article  CAS  Google Scholar 

  66. Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  67. Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article  CAS  Google Scholar 

  68. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  69. Chakraborty, P. et al. Exploration of CHπ interactions involving the π-system of pseudohalide coligands in metal complexes of a Schiff-base ligand. CrystEngComm 17, 4680–4690 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the Ministry of Education, Singapore (Academic Research Grant R-279-000-580-112 (J.X) and R-279-000-538-114 (J.X.)) and the National Natural Science Foundation of China (22071174 (J.X.)). The theoretical work at the University of Jyväskylä was supported by the Academy of Finland (grants 292352 (H.H.), 318905 (H.H.), 319208 (H.H.) and H.H.’s Academy Professorship). The computations were done at the CSC computing centre in Finland and in the FGCI–Finnish Grid and Cloud Infrastructure (persistent identifier, urn:nbn:fi:research-infras-2016072533). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.X. and Y.H. supervised the experimental work. J.X. and Q.Y. conceived the idea and designed the experiment. Q.Y., L.L., M.G. and H.X. carried out the experiments and characterizations. Z.W., T.C. and Y.C. contributed to data interpretation and theory development. H.H. supervised the theoretical and computational work. A.P. performed the image similarity analysis correlating Au25 NP models to the TEM data. S.M. performed DFT computations of the single NPs and linked NP models. M.F.M. performed the MD simulations of the linked NP models in aqueous solution. All authors contributed to manuscript writing.

Corresponding authors

Correspondence to Yu Han, Hannu Häkkinen or Jianping Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Thalappil Pradeep and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–99, Notes 1–9 and Table 1.

Supplementary Data 1

Source data for Supplementary Figs. 1, 2, 3, 5, 7, 8, 10, 14, 16, 18, 19, 21.

Supplementary Data 2

Source data for Supplementary Figs. 73, 77, 78, 79, 80, 81, 82.

Supplementary Data 3

Source data for Supplementary Figs. 89, 90, 91, 92, 93, 94, 95, 97, 98.

Source data

Source Data Fig. 1

Plottable source data for Fig. 1c,d,f,g.

Source Data Fig. 4

Plottable source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Q., Liu, L., Malola, S. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 15, 230–239 (2023). https://doi.org/10.1038/s41557-022-01079-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01079-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing