Solid-state chemistry articles within Nature Chemistry

Featured

  • Article
    | Open Access

    The development of new methodologies to convert plastics into fuels without relying on noble metal-based catalysts is desirable. Now it is shown that a layered self-pillared zeolite enables the conversion of polyethylene to gasoline with a selectivity of 99% and yields of >80% without the need to use external hydrogen.

    • Ziyu Cen
    • , Xue Han
    •  & Buxing Han
  • Article |

    Photon-driven dinitrogen reduction to ammonia is a promising but challenging reaction. Now it has been shown that lithium hydride undergoes photolysis upon ultraviolet illumination to yield long-lived photon-generated electrons residing in hydrogen vacancies, favouring the activation of the N≡N bond and achieving photocatalytic ammonia synthesis.

    • Yeqin Guan
    • , Hong Wen
    •  & Ping Chen
  • News & Views |

    The study of disordered materials poses numerous challenges, and computational approaches have proved useful to supplement and support structural experiments. Now, an abstract computational model has been used to study the structure of amorphous calcium carbonate, providing mechanistic insights into the emergence of the disordered phase as well as its atomic-level configurations.

    • Julia Dshemuchadse
  • Article |

    Radium complexes are of interest for use as cancer therapeutic agents, but the structure and bonding are poorly understood. Here, the synthesis of a Ra2+ complex is reported, and the structure and bonding characteristics are elucidated using single-crystal X-ray diffraction.

    • Frankie D. White
    • , Nikki A. Thiele
    •  & Samantha K. Cary
  • News & Views |

    The factors that control the solubility of a salt are many and varied. Now a set of salts with closely related cations suggests that weak London dispersion-controlled CH···π interactions can dominate solubility, despite the presence of much stronger forces.

    • Steve Scheiner
  • Article |

    The Au2+ oxidation state is rarely stable in molecules or extended solids, where extreme synthetic conditions or exotic ligands are often necessary. Now, Au2+ has been stabilized with simple Cl ligands in Cs4AuIIAuIII2Cl12, an extended solid with a perovskite-derived structure that is readily synthesized under mild conditions and is stable to ambient conditions.

    • Kurt P. Lindquist
    • , Armin Eghdami
    •  & Hemamala I. Karunadasa
  • Article |

    Functionalizing two-dimensional transition-metal carbide (MXene) surfaces can alter their properties, but covalent functionalization has been synthetically challenging. Now, it has been shown that various organic groups can be covalently attached to MXene surfaces through amido and imido bonds. The resulting hybrid organic–inorganic structures exhibit Fano resonances and superior stability compared with traditional MXenes with a mixture of –F, –O and –OH surface terminations.

    • Chenkun Zhou
    • , Di Wang
    •  & Dmitri V. Talapin
  • News & Views |

    The atomically precise assembly of metal nanoparticles offers vast possibilities for materials chemistry. Ring-shaped polyoxometalates have now served to stabilize Ag30 nanoparticles with exposed surfaces.

    • Carsten Streb
  • News & Views |

    The chemistry of polynitrogens has been enriched by a new isomer of N6 through the synthesis, in a laser-heated diamond anvil cell, of a charged aromatic [N6]4– ring that is recoverable at ambient temperature under high pressure.

    • Sandra Ninet
  • Article |

    Aromatic polynitrogen units can display both high stability and high energy content. A hexazine anion has now been identified in a complex compound, K9N56, which is formed at high pressures and temperatures under laser-heating in a diamond anvil cell. The [N6]4− ring is planar and proposed to be aromatic.

    • Dominique Laniel
    • , Florian Trybel
    •  & Natalia Dubrovinskaia
  • Perspective |

    Hydrogen, which possesses the highest gravimetric energy density of any energy carrier, is attractive for both mobile and stationary power, but its low volumetric energy density poses major storage and transport challenges. This Perspective delineates potential use cases and defines the challenges facing the development of materials for efficient hydrogen storage.

    • Mark D. Allendorf
    • , Vitalie Stavila
    •  & Tom Autrey
  • Article |

    A series of dicyanamide-based hybrid organic–inorganic perovskite structures has been shown to melt at temperatures below 300 °C. On melt-quenching, they form glasses that possess coordination bonding and show very low thermal conductivities and moderate electrical conductivities as well as polymer-like thermomechanical properties.

    • Bikash Kumar Shaw
    • , Ashlea R. Hughes
    •  & Thomas D. Bennett
  • Article |

    Three crystalline complexes comprising a linear [UN2] moiety that is isoelectronic to the ubiquitous uranyl cation [UO2]2+ have been prepared by reaction of UCl5 or UBr5 with liquid ammonia. Quantum chemical calculations showed that the bonding in the [UN2] moieties is best described with two U≡N triple bonds.

    • Stefan S. Rudel
    • , H. Lars Deubner
    •  & Florian Kraus
  • News & Views |

    Spin-1/2 kagome lattice antiferromagnets are geometrically frustrated materials poised to host yet-unobserved behaviours. Now, such a lattice has been prepared that shows no structural distortions and hosts its spin in the dxy orbital of d1 Ti3+ centres, rather than the more-widely investigated d9 Cu2+ ions.

    • Kelsey A. Collins
    •  & Danna E. Freedman
  • Article |

    The highly frustrated spin-1/2 kagome lattice antiferromagnet, predicted to exhibit unconventional magnetic behaviours, has remained difficult to synthesize without structural imperfections. Now, a d1-titanium fluoride kagome lattice antiferromagnet has been prepared in which there is only one crystallographically distinct Ti3+ site and one type of bridging fluoride, and it is shown to be a frustrated magnet with unusual magnetic properties.

    • Ningxin Jiang
    • , Arun Ramanathan
    •  & Henry S. La Pierre
  • Article |

    A material based on a three-dimensional –Fe–N≡C–Mo– anionic framework that hosts a Cs+ cation in every other pore has been shown to exhibit superionic conductivity, despite its polar crystal structure. It also exhibits second harmonic generation (SHG)—usually observed in insulators—and its ionic conductivity was reversibly altered under light irradiation.

    • Shin-ichi Ohkoshi
    • , Kosuke Nakagawa
    •  & Asuka Namai
  • Article |

    During the synthesis of inorganic materials nickel oxysulfide and nickel–cobalt hydroxide, clusters with well-defined structures—such as polyoxometalates—can co-assemble with nuclei to produce uniform binary assemblies. The resulting materials can, in turn, incorporate a third, and fourth, type of nanocluster deposited on their surface to form ternary and quaternary assemblies, respectively.

    • Junli Liu
    • , Wenxiong Shi
    •  & Xun Wang
  • News & Views |

    Precipitation processes enable the fast preparation of a variety of inorganic materials, although typically with little control over their morphology. Now, their one-, two- or three-dimensional growth has been promoted simply by tuning the electrolytic dissociation of the reactants and the supersaturation of the solution.

    • Mihui Park
    • , Gi-Hyeok Lee
    •  & Yong-Mook Kang
  • Article |

    Precipitation enables the straightforward production of a variety of inorganic materials, but the rapid reaction rates involved typically make controlling their morphologies difficult. Now, the growth of either one-, two- or three-dimensional materials has been promoted by tuning of the reactants’ electrolytic dissociation and solution supersaturation, without the need for capping agents and templates.

    • Wei-Hong Lai
    • , Yun-Xiao Wang
    •  & Shi-Xue Dou
  • Article |

    Gas sorption studies in porous materials typically reflect their overall gas uptake. Now, using a ‘gas adsorption crystallography’ method, the gas adsorption isotherms of two metal–organic frameworks (MOFs) have been quantitatively decomposed into sub-isotherms that reflect the pore-filling behaviour of various guests in the different types of pores present in the MOFs.

    • Hae Sung Cho
    • , Jingjing Yang
    •  & Osamu Terasaki
  • Article |

    Structural defects are known to exist in metal–organic frameworks (MOFs), and to affect the materials’ properties, but their exact structures have remained difficult to determine. Now, missing-linker and missing-cluster defects have been observed in a MOF using low-dose transmission electron microscopy, enabling their distributions, evolutions during crystallization and effects on the material’s catalytic activity to be explored.

    • Lingmei Liu
    • , Zhijie Chen
    •  & Yu Han
  • News & Views |

    The applicability of metal-organic frameworks (MOFs) — in spite of their obvious potential — is hindered by stability issues, in particular towards water. Now, a ‘crumple zone’ concept has been proposed in which the presence of sacrificial bonds protects a MOF without significantly altering its structure or functionality.

    • Jürgen Senker
  • Article |

    The promise shown by metal–organic frameworks for various applications is somewhat dampened by their instability towards water. Now, an activated MOF has shown good hydrolytic stability owing to the presence of weak, sacrificial coordination bonds that act as a ‘crumple zone’. On hydration, these weak bonds are cleaved preferentially to stronger coordination bonds that hold the MOF together.

    • Lauren N. McHugh
    • , Matthew J. McPherson
    •  & Russell E. Morris
  • News & Views |

    Disentangling the chemistry and physics behind reported unconventional superconductivity and exotic magnetism in alkali-intercalated PAHs has remained problematic due to the lack of phase-pure samples. Two synthetic pathways have now remedied this issue, facilitating studies of cooperative electronic properties based on carbon π-electrons.

    • Roser Valentí
    •  & Stephen M. Winter
  • Article |

    Unlike in the d block, intervalence charge transfer is rare in the 5f block owing to localized valence electrons and poor overlap between metal and ligand orbitals. Delocalization of 5f electrons has now been observed in a Pu(III)/Pu(IV)–pyridinedicarboxylate solid-state compound. It occurs through metal-to-ligand charge transfer with both plutonium centres.

    • Samantha K. Cary
    • , Shane S. Galley
    •  & Thomas E. Albrecht-Schmitt
  • Article |

    Reports of superconductivity in KxPicene spurred interest in alkali-intercalated polyaromatic hydrocarbon (PAH) compounds, but their compositions and structures have remained unclear. Now crystalline K2Pentacene and K2Picene — neither of which are superconducting — have been prepared by mild synthesis. Structural analysis shows that the cation sites arise within the molecular layers from reorientation of the PAHs within a herringbone packing.

    • F. Denis Romero
    • , M. J. Pitcher
    •  & M. J. Rosseinsky
  • News & Views |

    Helium, the 'most noble' of the noble gases, had only been coaxed into forming molecular ions or van der Waals compounds. It has now been seen in a stable solid compound, Na2He, under high pressure.

    • Maosheng Miao
  • Article |

    Breathing metal–organic frameworks (MOFs) are functional materials whose molecular-scale pores can reversibly open and close. In contrast to typical defined structural transitions, continuous breathing has now been observed for a diamondoid MOF. Removal of two different solvents leads to two desolvated MOF polymorphs with dramatically different porosities and gas uptake properties, including CO2/CH4 selectivities. Partial desolvation introduces pressure-gated CO2 adsorption.

    • Elliot J. Carrington
    • , Craig A. McAnally
    •  & Lee Brammer
  • Article |

    Helium is generally recognized as being chemically inert. A thermodynamically stable compound of helium and sodium, Na2He, has been predicted computationally and then synthesized at high pressure. It exists as an electride, where strongly localized electrons serve as anions located at the centre of Na8 cubes.

    • Xiao Dong
    • , Artem R. Oganov
    •  & Hui-Tian Wang
  • Article |

    Converting CS2 and COS pollutants into benign products is critical in eliminating waste exhaust fumes. Now, a series of air-stable palladium complexes mediate hydrolysis of both CS2 carbon–sulfur bonds at 25 °C to produce CO2. Oxidation of the resulting complexes regenerates the starting complexes with SO2 and NO2 release.

    • Xuan-Feng Jiang
    • , Hui Huang
    •  & Tobin J. Marks
  • Article |

    Phase transitions in materials are intriguing, and can also be of practical importance. Below ∼150 K, mixed-valent iron oxide Fe4O5 has now been shown to undergo an unusual charge-ordering phase transition that involves the competing formation of iron dimers and trimers, and leads to a significant increase in electrical resistivity.

    • Sergey V. Ovsyannikov
    • , Maxim Bykov
    •  & Leonid S. Dubrovinsky
  • News & Views |

    Controlling interfaces between transition-metal oxides and dissimilar structures is crucial for practical applications, yet has remained a quandary. Now, a coherent interface that bridges a perovskite and a fluorite structure has been formed using judiciously chosen metal cations.

    • Kenneth R. Poeppelmeier
    •  & James M. Rondinelli
  • News & Views |

    The properties of metal–organic frameworks — promising for a myriad of applications — can be commonly tuned by judicious choice of the building blocks used to prepare the material. Now, simply downsizing a rigid, non-porous MOF to a thin film has been shown to endow it with dynamic, gate-opening-type guest uptake behaviour.

    • Christopher J. Sumby
  • Article |

    The behaviour of heterostructures, crucial in nanodevices, largely depends on interfacial phenomena. These have proven difficult to control when the different materials adopt distinct crystal structures. Now, a coherent interface between perovskite and fluorite has been achieved that relies in particular on the coordination flexibility of judiciously chosen metal cations.

    • Marita O'Sullivan
    • , Joke Hadermann
    •  & Matthew J. Rosseinsky
  • Article |

    Oxynitrides are garnering interest because of their variety of novel properties, but their synthesis has typically involved highly reducing conditions that put significant constraints on their composition, structure and properties. Now, the lability of H in perovskite oxyhydride BaTiO3−xHx has enabled H/N3– exchange at a lower temperature, yielding a ferroelectric oxynitride BaTiO3−xN2x/3.

    • Takeshi Yajima
    • , Fumitaka Takeiri
    •  & Hiroshi Kageyama
  • News & Views |

    Building on our understanding of the chemical bond, advances in synthetic chemistry, and large-scale computation, materials design has now become a reality. From a pool of 400 unknown compositions, 15 new compounds have been realized that adopt the predicted structures and properties.

    • Aron Walsh
  • Article |

    A method to predict the stability, structure and properties of as-yet-unreported materials has been devised. For 18-valence electron ABX materials, 15 such ‘missing’ compounds identified to be thermodynamically stable were successfully synthesized, and showed crystal structures and properties in good agreement with the predicted ones.

    • Romain Gautier
    • , Xiuwen Zhang
    •  & Alex Zunger
  • News & Views |

    The photoinduced production of hydrogen from HCl is an attractive alternative to water splitting. Insights into this challenging reaction have now been gained using photocrystallography, which provides a snapshot of the structural changes occurring during the elimination of chlorine from a dinuclear rhodium catalyst.

    • Haifeng Yang
    •  & François P. Gabbaï
  • Article |

    Transferring molecular motion to macroscopic shape change of a crystal has potential application in actuators, or ‘artificial muscles’. Now, a single crystal of a Ni complex has been shown to exhibit a large, abrupt, temperature-induced crystal expansion/contraction near room temperature. The crystal deformation is induced by a collective 90° rotation of oxalate anions in the complex.

    • Zi-Shuo Yao
    • , Masaki Mito
    •  & Osamu Sato
  • Article |

    A family of dipeptide-based metal–organic frameworks has been shown to respond to the presence of guests in a cooperative manner controlled by one amino acid residue. When the linker features a serine residue, guest removal enables the formation of hydrogen bonds between the residue's side-chains, causing a conformational change that closes the MOF's porous domain.

    • C. Martí-Gastaldo
    • , D. Antypov
    •  & M. J. Rosseinsky
  • Article |

    Caesium has so far not been found in oxidation states higher than +1, but quantum chemical calculations have now shown that, under high pressures, 5p inner shell electrons of caesium can participate in — and become the main components of — bonds. Caesium is predicted to form stable CsFn molecules that resemble isoelectronic XeFn.

    • Mao-sheng Miao
  • News & Views |

    Catalyst particles for fluid catalytic cracking are vital for the oil-refinery industry, but their activity is hard to diagnose because of their inter- and intra-particle structural inhomogeneity. With fluorescence confocal microscopy and selective staining, one can now pinpoint the catalytic activity within single catalyst particles from an industrial reactor.

    • Peng Chen
  • Review Article |

    The synthesis or separation of chiral compounds is crucial for many areas of chemistry, with chiral solids having important roles as catalysts or separating agents. This Review covers recent progress and future avenues for developing methods of preparing chiral solids from achiral starting materials.

    • Russell E. Morris
    •  & Xianhui Bu
  • Article |

    The movement of oxygen ions through materials is important in electrolytes and separation membranes, but is rare at lower temperatures. Two different low-temperature diffusion pathways are revealed during the reduction process of CaFeO2.5 to CaFeO2. The two pathways are significantly different, resulting in anisotropy.

    • Satoru Inoue
    • , Masanori Kawai
    •  & Yuichi Shimakawa