Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thorium(iv)–antimony complexes exhibiting single, double, and triple polar covalent metal–metal bonds

Abstract

There is continued burgeoning interest in metal–metal multiple bonding to further our understanding of chemical bonding across the periodic table. However, although polar covalent metal–metal multiple bonding is well known for the d and p blocks, it is relatively underdeveloped for actinides. Homometallic examples are found in spectroscopic or fullerene-confined species, and heterometallic variants exhibiting a polar covalent σ bond supplemented by up to two dative π bonds are more prevalent. Hence, securing polar covalent actinide double and triple metal–metal bonds under normal experimental conditions has been a fundamental target. Here we exploit the protonolysis and dehydrocoupling chemistry of the parent dihydrogen-antimonide anion, to report one-, two- and three-fold thorium–antimony bonds, thus introducing polar covalent actinide–metal multiple bonding under normal experimental conditions between some of the heaviest ions in the periodic table with little or no bulky-substituent protection at the antimony centre. This provides fundamental insights into heavy element multiple bonding, in particular the tension between orbital-energy-driven and overlap-driven covalency for the actinides in a relativistic regime.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of Th–Sb complexes 5–10, 18C6 = 18-crown-6 ether.
Fig. 2: Single-crystal X-ray diffraction solid-state structures of 5, 6, 7 and 8 at 150, 140, 100 and 120 K, respectively with displacement ellipsoids at 40% and selective labelling.
Fig. 3: Single-crystal X-ray diffraction solid-state structures of 9 and 10 at 100 and 105 K, respectively, with displacement ellipsoids at 40% and selective labelling.
Fig. 4: NLMOs for truncated 5′, 7 and truncated 8′ with non-Sb H atoms and weakly or non-coordinated {K(L)}+ (L = 18C6, 2.2.2-crypt) cations omitted.
Fig. 5: NLMOs for truncated 10′ with non-Si H atoms omitted.

Similar content being viewed by others

Data availability

The X-ray crystallographic coordinates for structures reported in this study have been deposited with the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC 2285677 (5), 2285678 (6), 2285679 (7), 2285680 (8), 2285681 (9) and 2285682 (10). These data can be obtained free of charge from CCDC via www.ccdc.cam.ac.uk/data_request/cif. All other data are presented in the main text and the Supplementary Information, and are also available from the corresponding authors on reasonable request.

References

  1. Cotton, F. A., Murillo, C. A. & Walton, R. A. (eds) Multiple Bonds Between Metal Atoms 3rd edn (Springer, 2005).

  2. Liddle. S. T. (ed.) Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties (Wiley, 2015).

  3. Patel, D. & Liddle, S. T. f-element-metal bond chemistry. Rev. Inorg. Chem. 32, 1–22 (2012).

    Article  Google Scholar 

  4. Fang, W., Maron, L. & Zhu, C. in Handbook on the Physics and Chemistry of Rare Earths Vol. 63 (eds Bünzli, J.-C. G. & Kauzlarich, S. M.) Ch. 327 (North-Holland/Elsevier, 2023).

  5. Gorokhov, L. N., Emelyanov, A. M. & Khodeev, Y. S. Mass-spectroscopic investigation of stability of gaseous U2O2 and U2. High Temp. 12, 1307–1309 (1974).

    CAS  Google Scholar 

  6. Steimle, T., Kokkin, D. L., Muscarella, S. & Ma, T. Detection of the thorium dimer via two-dimensional fluorescence spectroscopy. J. Phys. Chem. A 119, 9281–9285 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Chi, C. et al. Preparation and characterization of uranium-iron triple-bonded UFe(CO)3 and OUFe(CO)3 complexes. Angew. Chem. Int. Ed. 56, 6932–6936 (2017).

    Article  CAS  Google Scholar 

  8. Souter, P. F., Kushto, G. P. & Andrews, L. IR spectra of uranium hydride molecules isolated in solid argon. Chem. Commun. 1996, 2401–2402 (1996).

  9. Souter, P. F., Kushto, G. P., Andrews, L. & Neurock, M. Experimental and theoretical evidence for the formation of several uranium hydride molecules. J. Am. Chem. Soc. 119, 1682–1687 (1997).

    Article  CAS  Google Scholar 

  10. Zhang, X. et al. U2@Ih(7)-C80: crystallographic characterization of a long-sought dimetallic actinide endohedral fullerene. J. Am. Chem. Soc. 140, 3907–3915 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Zhuang, J. et al. Characterization of a strong covalent Th3+-Th3+ bond inside an Ih(7)-C80 fullerene cage. Nat. Commun. 12, 2372 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Ritchey, J. M. et al. An organothorium-nickel phosphido complex with a short thorium-nickel distance. The structure of Th(η5-C5Me5)2(μ-PPh2)2Ni(CO)2. J. Am. Chem. Soc. 107, 501–503 (1985).

    Article  CAS  Google Scholar 

  13. Sternal, R. S., Brock, C. P. & Marks, T. J. Metal-metal bonds involving actinides. Synthesis and characterization of a complex having an unsupported actinide to transition metal bond. J. Am. Chem. Soc. 107, 8270–8272 (1985).

    Article  CAS  Google Scholar 

  14. Hay, P. J., Ryan, R. R., Salazar, K. V., Wrobleski, D. A. & Sattelberger, A. P. Synthesis and X-ray structure of (C5Me5)2Th(μ-PPh2)2Pt(PMe3): a complex with a thorium–platinum bond. J. Am. Chem. Soc. 108, 313–315 (1986).

    Article  CAS  Google Scholar 

  15. Porchia, M. et al. Synthesis and crystal structure of triscyclopentadienyl(triphenyltin)uranium. The first example of a uranium tin bond. Chem. Commun. 1034–1035 (1986).

  16. Bucaille, A., Le Borgne, T., Ephritikhine, M. & Daran, J.-C. Synthesis and X-ray crystal structure of a urana[1]ferrocenophane, the first tris(1,1’-ferrocenylene) metal compound. Organometallics 19, 4912–4914 (2000).

    Article  CAS  Google Scholar 

  17. Diaconescu, P. L., Odom, A. L., Agapie, T. & Cummins, C. C. Uranium-group 14 element single bonds: isolation and characterization of a uranium(IV) silyl species. Organometallics 20, 4993–4995 (2001).

    Article  CAS  Google Scholar 

  18. Monreal, M. J., Carver, C. T. & Diaconescu, P. L. Redox processes in a uranium bis(1,1′-diamidoferrocene) complex. Inorg. Chem. 46, 7226–7228 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Monreal, M. J. & Diaconescu, P. L. A weak interaction between iron and uranium in uranium alkyl complexes supported by cerrocene diamide ligands. Organometallics 27, 1702–1706 (2008).

    Article  CAS  Google Scholar 

  20. Minasian, S. G., Krinsky, J. L., Williams, V. A. & Arnold, J. A heterobimetallic complex with an unsupported uranium(III)-aluminum(I) bond: (CpSiMe3)3U-AlCp* (Cp* = C5Me5). J. Am. Chem. Soc. 130, 10086–10087 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Liddle, S. T. et al. σ and π donation in an unsupported uranium-gallium bond. Angew. Chem. Int. Ed. 48, 1077–1080 (2009).

    Article  CAS  Google Scholar 

  22. Gardner, B. M. McMaster, J., Lewis, W. & Liddle, S. T. Synthesis and structure of [{N(CH2CH2NSiMe3)3}URe(η5-C5H5)2]: a heterobimetallic complex with an unsupported uranium-rhenium bond. Chem. Commun. 2009, 2851–2853 (2009).

  23. Minasian, S. G. et al. A comparison of 4ƒ vs 5ƒ metal-metal bonds in (CpSiMe3)3M-ECp* (M = Nd, U; E;= Al, Ga; Cp* = C5Me5): synthesis, thermodynamics, magnetism, and electronic structure. J. Am. Chem. Soc. 131, 13767–13783 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Broderick, E. M., Gutzwiller, N. P. & Diaconescu, P. L. Inter- and intramolecular hydroamination with a uranium dialkyl precursor. Organometallics 29, 3242–3251 (2010).

    Article  CAS  Google Scholar 

  25. Patel, D. et al. Structural and theoretical insights into the perturbation of uranium-rhenium bonds by dative Lewis base ancillary ligands. Chem. Commun. 47, 295–297 (2011).

    Article  CAS  Google Scholar 

  26. Patel, D. et al. A formal high oxidation state inverse-sandwich diuranium complex: a new route to f-block-metal bonds. Angew. Chem. Int. Ed. 50, 10388–10392 (2011).

    Article  CAS  Google Scholar 

  27. Gardner, B. M. et al. An unsupported uranium-rhenium complex prepared by alkane elimination. Chem. Eur. J. 17, 6909–6912 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Gardner, B. M. et al. The nature of unsupported uranium-ruthenium bonds: a combined experimental and theoretical study. Chem. Eur. J. 17, 11266–11273 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Monreal, M. J., Khan, S. I., Kiplinger, J. L. & Diaconescu, P. L. Molecular quadrangle formation from a diuranium μ-η66-toluene complex. Chem. Commun. 47, 9119–9121 (2011).

    Article  CAS  Google Scholar 

  30. Fortier, S., Walensky, J. R., Wu, G. & Hayton, T. W. High-valent uranium alkyls: evidence for the formation of UVI(CH2SiMe3)6. J. Am. Chem. Soc. 133, 11732–11743 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Napoline, J. W. et al. Tris(phosphinoamide)-supported uranium-cobalt heterobimetallic complexes featuring Co → U dative interactions. Inorg. Chem. 52, 12170–12177 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Duhovic, S. et al. Investigation of the electronic structure of mono(1,1′-diamidoferrocene) uranium(IV) complexes. Organometallics 32, 6012–6021 (2013).

    Article  CAS  Google Scholar 

  33. Ward, A. L., Lukens, W. W., Lu, C. C. & Arnold, J. Photochemical route to actinide-transition metal bonds: synthesis, characterization and reactivity of a series of thorium and uranium heterobimetallic complexes. J. Am. Chem. Soc. 136, 3647–3654 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Hlina, J. A., Pankhurst, J. R., Kaltsoyannis, N. & Arnold, P. L. Metal-metal bonding in uranium-group 10 complexes. J. Am. Chem. Soc. 138, 3333–3345 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Winston, M. S., Batista, E. R., Yang, P., Tondreau, A. M. & Boncella, J. M. Extending stannyl anion chemistry to the actinides: synthesis and characterization of a uranium-tin bond. Inorg. Chem. 55, 5534–5539 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Lichtenberger, N. et al. Main group metal-actinide magnetic coupling and structural response upon U4+ inclusion into Bi, Tl/Bi, or Pb/Bi cages. J. Am. Chem. Soc. 138, 9033–9036 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Yang, P. et al. Experimental and computational studies on the formation of thorium-copper heterobimetallics. Chem. Eur. J. 22, 13845–13849 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Hlina, J. A., Wells, J. A. L., Pankhurst, J. R., Love, J. B. & Arnold, P. L. Uranium rhodium bonding in heterometallic complexes. Dalton Trans. 46, 5540–5545 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fortier, S. et al. An N-tethered uranium(III) arene complex and the synthesis of an unsupported U-Fe bond. Organometallics 36, 4591–4599 (2017).

    Article  CAS  Google Scholar 

  40. Camp, C., Toniolo, D., Andrez, J., Pécaut, J. & Mazzanti, M. A versatile route to homo- and hetero-bimetallic 5ƒ–5ƒ and 3d–5ƒ complexes supported by a redox active ligand framework. Dalton Trans. 46, 11145–11148 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Rookes, T. M. et al. Actinide-pnictide (An-Pn) bonds spanning non-metal, metalloid, and metal combinations (An = U, Th; Pn = P, As, Sb, Bi). Angew. Chem. Int. Ed. 57, 1332–1336 (2018).

    Article  CAS  Google Scholar 

  42. Lu, E., Wooles, A. J., Gregson, M., Cobb, P. J. & Liddle, S. T. A very short uranium(IV)-rhodium(I) bond with net double-dative bonding character. Angew. Chem. Int. Ed. 57, 6587–6591 (2018).

    Article  CAS  Google Scholar 

  43. Ayres, A. J. et al. Actinide-transition metal bonding in heterobimetallic uranium- and thorium-molybdenum paddlewheel complexes. Chem. Commun. 54, 13515–13518 (2018).

    Article  CAS  Google Scholar 

  44. Feng, G. et al. Identification of a uranium-rhodium triple bond in a heterometallic cluster. Proc. Natl Acad. Sci. USA 116, 17654–17658 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Feng, G. et al. Transition-metal-bridged bimetallic clusters with multiple uranium-metal bonds. Nat. Chem. 11, 248–253 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Feng, G., McCabe, K. N., Wang, S., Maron, L. & Zhu, C. Construction of heterometallic clusters with multiple uranium-metal bonds by using dianionic nitrogen-phosphorus ligands. Chem. Sci. 11, 7585–7592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xin, X. et al. Dinitrogen cleavage by a heterometallic cluster featuring multiple uranium-rhodium bonds. J. Am. Chem. Soc. 142, 15004–15011 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Eulenstein, A. R. et al. Substantial π-aromaticity in the anionic heavy-metal cluster [Th@Bi12]4−. Nat. Chem. 13, 149–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Tarlton, M. L., Kelley, S. P. & Walensky, J. R. Crystal structures of metallocene complexes with uranium-germanium bonds. Acta Crystallogr. E 77, 1258–1262 (2021).

    Article  CAS  Google Scholar 

  50. Boronski, J. T. et al. A crystalline tri-thorium cluster with σ-aromatic metal-metal bonding. Nature 598, 72–75 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  51. Wang, P. et al. Selective hydroboration of terminal alkynes catalysed by heterometallic clusters with uranium-metal triple bonds. Chem 8, 1361–1375 (2022).

    Article  CAS  Google Scholar 

  52. Barluzzi, L. et al. Heterometallic uranium/molybdenum nitride synthesis via partial N-atom transfer. Chem. Commun. 58, 4655–4658 (2022).

    Article  CAS  Google Scholar 

  53. Beuthert, K., Weinert, B., Wilson, R. J., Weigend, F. & Dehnen, S. [M@Sn14xSbx]q− (M = La, Ce, or U; x = 6-8; q = 3, 4): Interaction of 4ƒ or 5ƒ metal ions with 5p metal atoms in intermetalloid clusters. Inorg. Chem. 62, 1885–1890 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Shen, J. et al. Complexes featuring a cis-[MUM] core (M = Rh, Ir): a new route to uranium-metal multiple bonds. Angew. Chem. Int. Ed. 62, e202303379 (2023).

    Article  CAS  Google Scholar 

  55. Ye, C. Z. et al. A versatile strategy for the formation of hydride-bridged actinide-iridium multimetallics. Chem. Sci. 14, 861–868 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Li, K. et al. Heterotrimetallic clusters with U-Ni-Ge and U-Ni-Sn units. Polyhedron 243, 116548 (2023).

    Article  CAS  Google Scholar 

  57. Hayton, T. W. Recent developments in actinide-ligand multiple bonding. Chem. Commun. 49, 2956–2973 (2013).

    Article  CAS  Google Scholar 

  58. Liddle, S. T. The renaissance of non-aqueous uranium chemistry. Angew. Chem. Int. Ed. 54, 8604–8641 (2015).

    Article  CAS  ADS  Google Scholar 

  59. Rudel, S. S., Deubner, H. L., Müller, M., Karttunen, A. J. & Kraus, F. Complexes featuring a linear [N≡U≡N] core isoelectronic to the uranyl cation. Nat. Chem. 12, 962–967 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Du, J., Cobb, P. J., Ding, J., Mills, D. P. & Liddle, S. T. f-Element heavy pnictogen chemistry. Chem. Sci. 15, 13–45 (2024).

  61. Gardner, B. M. et al. Triamidoamine-uranium(IV)-stabilized terminal parent phosphide and phosphinidene complexes. Angew. Chem. Int. Ed. 53, 4484–4488 (2014).

    Article  CAS  Google Scholar 

  62. Wildman, E. P., Balázs, G., Wooles, A. J., Scheer, M. & Liddle, S. T. Thorium–phosphorus triamidoamine complexes containing Th–P single- and multiple-bond interactions. Nat. Commun. 7, 12884 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Du, J. et al. Actinide pnictinidene chemistry: a terminal thorium parent-arsinidene complex stabilised by a super-bulky triamidoamine ligand. Angew. Chem. Int. Ed. 61, e202211627 (2022).

    Article  CAS  Google Scholar 

  64. Gardner, B. M. et al. Triamidoamine uranium(IV)–arsenic complexes containing one-, two-, and three-fold U–As bonding interactions. Nat. Chem. 7, 582–590 (2015).

    Article  CAS  PubMed  Google Scholar 

  65. Wildman, E. P., Balázs, G., Wooles, A. J., Scheer, M. & Liddle, S. T. Triamidoamine thorium-arsenic complexes with parent arsenide, arsinidiide and arsenido structural motifs. Nat. Commun. 8, 14769 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  66. Magnall, R. Photolytic and reductive activations of 2-arsaethynolate in a uranium–triamidoamine complex: decarbonylative arsenic-group transfer reactions and trapping of a highly bent and reduced form. Chem. Eur. J. 25, 14246–14252 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Rookes, T. M. et al. Crystalline diuranium phosphinidiide and μ-phosphido complexes with symmetric and asymmetric cores. Angew. Chem. Int. Ed. 56, 10495–10500 (2017).

    Article  CAS  Google Scholar 

  68. Dollberg, K., Schneider, S., Richter, R.-M., Dunaj, T. & Von Hänisch, C. Synthesis and application of alkali metal antimonide – a new approach to antimony chemistry. Angew. Chem. Int. Ed. 61, e202213098 (2022).

    Article  CAS  Google Scholar 

  69. Sasamori, T., Takeda, N. & Tokitoh, N. Synthesis of a stable stibabismuthene; the first compound with an antimony-bismuth double bond. Chem. Commun. 1353–1354 (2000).

  70. Helling, C., Wölper, C., Schulte, Y., Cutsail, G. E. III & Schulz, S. Synthesis of a Ga-stabilized As-centered radical and a gallastibene by tailoring group 15 element-carbon bond strengths. Inorg. Chem. 58, 10323–10332 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Bringewski, F., Huttner, G. & Imhof, W.Stibacumulenium-ionen: Darstellung und struktur von [η6-Me6C6(CO)2Cr=Sb=Cr(CO)26-C6Me6]+. J. Organomet. Chem. 448, C3–C5 (1993).

    Article  CAS  Google Scholar 

  72. Scheer, M., Müller, J., Baum, G. & Häser, M. Antimony as a symmetrically bridged ligand in a novel neutral complex. Chem. Commun. 1998, 2505–2506 (1998).

    Article  Google Scholar 

  73. Balázs, G., Sierka, M. & Scheer, M. Antimony-tungsten triple bond: a stable complex with a terminal antimony ligand. Angew. Chem. Int. Ed. 44, 4920–4924 (2005).

    Article  Google Scholar 

  74. Krüger, J., Ganesamoorthy, C., John, L., Wölper, C. & Schulz, S. A general pathway for the synthesis of gallastibenes containing Ga=Sb double bonds. Chem. Eur. J. 24, 9157–9164 (2018).

    Article  PubMed  Google Scholar 

  75. Ganesamoorthy, C. et al. From stable Sb- and Bi-centered radicals to a compound with a Ga=Sb double bond. Nat. Commun. 9, 87 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  76. Helling, C. et al. A mechanistic study on reactions of group 13 diyls LM with Cp*SbX2: from stibanyl radicals to antimony hydrides. Chem. Eur. J. 26, 13390–13339 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Krüger, J., Wölper, C. & Schulz, S. From π-bonded gallapnictenes to nucleophilic, redox-active metal-coordinated pnictanides. Angew. Chem. Int. Ed. 60, 3572–3575 (2021).

    Article  Google Scholar 

  78. Gardner, B. M. et al. Assessing crystal field and magnetic interactions in diuranium-μ-chalcogenide triamidoamine complexes with UIV-E-UIV cores (E = S, Se, Te): implications for determining the presence or absence of actinide-actinide magnetic exchange. Chem. Sci. 8, 6207–6217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gardner, B. M. et al. Isolation of elusive HAsAsH in a crystalline diuranium(IV) complex. Angew. Chem. Int. Ed. 54, 15250–15254 (2015).

    Article  CAS  Google Scholar 

  80. Pyykkö, P. Additive covalent radii for single-, double-, and triple-bonded molecules and tetrahedrally bonded crystals: a summary. J. Phys. Chem. A 119, 2326–2337 (2015).

    Article  PubMed  Google Scholar 

  81. Schneider, S., Ivlev, S. & Von Hänisch, C. Stibine as a reagent in molecular chemistry – target synthesis of primary and secondary stibanyl-gallanes and their lighter homologues. Chem. Commun. 57, 3781–3784 (2021).

    Article  CAS  Google Scholar 

  82. Cherng, J.-J., Lee, G.-H., Peng, S.-M., Ueng, C.-H. & Shieh, M. Synthesis and characterization of the new series of chromium−group 15 hydride complexes [Et4N]2[HE{Cr(CO)5}3] (E = As, Sb). Organometallics 19, 213–215 (2000).

    Article  CAS  Google Scholar 

  83. Brown, J. L., Fortier, S., Lewis, R. A., Wu, G. & Hayton, T. W. A complete family of terminal uranium chalcogenides, [U(E)(N{SiMe3}2)3] (E = O, S, Se, Te). J. Am. Chem. Soc. 134, 15468–15475 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(En){N(SiMe3)2}3] (E = Se, Te; n = 1,2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Schoo, C. et al. Samarium polystibides derived from highly activated nanoscale antimony. Angew. Chem. Int. Ed. 57, 5912–5916 (2018).

    Article  CAS  ADS  Google Scholar 

  86. Bader, R. F. W., Slee, T. S., Cremer, D. & Kraka, E. Description of conjugation and hyperconjugation in terms of electron distributions. J. Am. Chem. Soc. 105, 5061–5068 (1983).

    Article  CAS  Google Scholar 

  87. Filippou, A. C., Weidemann, N., Schnakenburg, G., Rohde, H. & Philippopoulos, A. I. Tungsten–lead triple bonds: syntheses, structures, and coordination chemistry of the plumbylidyne complexes trans-[X(PMe3)4W≡Pb(2,6-Trip2C6H3)]. Angew. Chem. Int. Ed. 43, 6512–6516 (2004).

    Article  CAS  Google Scholar 

  88. Neidig, M. L., Clark, D. L. & Martin, R. L. Covalency in f-element complexes. Coord. Chem. Rev. 257, 394–406 (2013).

    Article  CAS  Google Scholar 

  89. Kaltsoyannis, N. Does covalency increase or decrease across the actinide series? Implications for minor actinide partitioning. Inorg. Chem. 52, 3407–3413 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Barker, B. J. & Sears, P. G. Conductance behavior of some ammonium and partially substituted ammonium tetraphenylborates in 3-methyl-2-oxazolidone and 3-tert-butyl-2-oxazolidone at 25°. J. Phys. Chem. 78, 2687–2688 (1974).

    Article  CAS  Google Scholar 

  91. Gardner, B. M. et al. The role of 5f-orbital participation in unexpected inversion of the σ-bond metathesis reactivity trend of triamidoamine thorium(IV) and uranium(IV) alkyls. Chem. Sci. 5, 2489–2497 (2014).

    Article  CAS  Google Scholar 

  92. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  93. CrysAlis PRO v.1.171.40.69a (Oxford Diffraction/Agilent Technologies, 2020).

  94. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  95. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article  CAS  ADS  Google Scholar 

  96. Farrugia, L. J. WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849–854 (2012).

    Article  CAS  ADS  Google Scholar 

  97. Persistence of Vision Raytracer v.6.2 (Persistence of Vision Pty, 2005).

  98. Hitchcock, P. B., Lappert, M. F., Maron, L. & Protchenko, A. V. Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew. Chem. Int. Ed. 47, 1488–1491 (2008).

    Article  CAS  Google Scholar 

  99. Gardner, B. M. et al. Assessing crystal field and magnetic interactions in diuranium-μ-chalcogenide triamidoamine complexes with UIV-E-UIV cores (E = S, Se, Te): implications for determining the presence or absence of actinide-actinide magnetic exchange. Chem. Sci. 8, 6207–6217 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fonseca Guerra, A. C., Snijders, J. G., Te Velde, G. & Baerends, E. J. Towards an order-N DFT method. Theor. Chem. Acc. 99, 391–403 (1998).

    Google Scholar 

  101. Te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  102. Van Lenthe, E., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993).

    Article  ADS  Google Scholar 

  103. Van Lenthe, E., Baerends, E. J. & Snijders, J. G. Relativistic total energy using regular approximations. J. Chem. Phys. 101, 9783–9792 (1994).

    Article  ADS  Google Scholar 

  104. Van Lenthe, E., Ehlers, A. E. & Baerends, E. J. Geometry optimizations in the zero order regular approximation for relativistic effects. J. Chem. Phys. 110, 8943–8953 (1999).

    Article  ADS  Google Scholar 

  105. Vosko, S. H., Wilk, L. & Nusair, M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article  CAS  ADS  Google Scholar 

  106. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  ADS  Google Scholar 

  107. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).

    Article  CAS  ADS  Google Scholar 

  108. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

  109. Bader, R. F. W. A bond path: a universal indicator of bonded interactions. J. Phys. Chem. A 102, 7314–7323 (1998).

    Article  CAS  Google Scholar 

  110. Glendening, E. D., Landis, C. R. & Weinhold, F. NBO 6.0: Natural Bond Orbital Analysis Program. J. Comput. Chem. 34, 2134–2134 (2013).

    Article  CAS  Google Scholar 

  111. Motta, L. C. & Autschbach, J. Actinide inverse trans influence versus cooperative pushing from below and multi-center bonding. Nat. Commun. 14, 4307 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (grants EP/T011289/1, EP/P001386/1, EP/M027015/1, and EP/W029057/1, S.T.L.), European Research Council (CoG612724, S.T.L.), Deutsche Forschungsgemeinschaft (HA 3466/11-1, C.v.H.), Philipps-Universität Marburg (K.D., C.v.H.) and the University of Manchester including computational resources and associated support services from the Computational Shared Facility (J.D., J.A.S., A.J.W., S.T.L.). The Alexander von Humboldt Foundation is thanked for a Friedrich Wilhelm Bessel Research Award (S.T.L.). We thank M. Jennings and A. Davies at the University of Manchester for CHN microanalyses.

Author information

Authors and Affiliations

Authors

Contributions

J.D. synthesized the thorium–antimony complexes and characterized them. K.D. prepared the antimony reagent. J.A.S. recorded the optical data and fitted them to the TD-DFT calculations. A.J.W. collected and refined the crystallographic data. S.T.L. conducted the quantum chemical calculations. C.v.H. and S.T.L. conceived the research idea, directed the research, analysed and interpreted all the data, and wrote the manuscript, with contributions from all the authors.

Corresponding authors

Correspondence to Carsten von Hänisch or Stephen T. Liddle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Crystallographic alerts and justifications, Supplementary Figs. 1–70 and Tables 1–10.

Supplementary Data 1

Cif data for 5 including fcf.

Supplementary Data 2

Cif data for 6 including fcf.

Supplementary Data 3

Cif data for 7 including fcf.

Supplementary Data 4

Cif data for 8 including fcf.

Supplementary Data 5

Cif data for 9 including fcf.

Supplementary Data 6

Cif data for 10 including fcf.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Dollberg, K., Seed, J.A. et al. Thorium(iv)–antimony complexes exhibiting single, double, and triple polar covalent metal–metal bonds. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01448-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01448-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing