Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water

Abstract

Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H–H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H–H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of H2 evolution.
Fig. 2: Synthesis of iridium complexes.
Fig. 3: Photoelectrocatalysis with diiridium complexes.
Fig. 4: Self-assembly into catalytic aggregates.
Fig. 5: Electrochemistry, photoelectrocatalysis and aggregation characterization of monometallic self-aggregating catalysts as compared to other catalysts in this study.
Fig. 6: Photoelectrocatalysis activity and overpotential relationships.

Similar content being viewed by others

Data availability

All data generated and analysed in this study are included in this article and its Supplementary Information. Source data are provided with this paper.

References

  1. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Cook, T. R. et al. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photon. 6, 511–518 (2012).

    Article  CAS  Google Scholar 

  5. Esswein, A. J. & Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 107, 4022–4047 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Kärkäs, M. D., Verho, O., Johnston, E. V. & Åkermark, B. Artificial photosynthesis: molecular systems for catalytic water oxidation. Chem. Rev. 114, 11863–12001 (2014).

    Article  PubMed  Google Scholar 

  8. Ashford, D. L. et al. Molecular chromophore–catalyst assemblies for solar fuel applications. Chem. Rev. 115, 13006–13049 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Brereton, K. R., Bonn, A. G. & Miller, A. J. M. Molecular photoelectrocatalysts for light-driven hydrogen production. ACS Energy Lett. 3, 1128–1136 (2018).

    Article  CAS  Google Scholar 

  10. Reyes Cruz, E. A. et al. Molecular-modified photocathodes for applications in artificial photosynthesis and solar-to-fuel technologies. Chem. Rev. 122, 16051–16109 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Costentin, C., Dridi, H. & Savéant, J.-M. Molecular catalysis of H2 evolution: diagnosing heterolytic versus homolytic pathways. J. Am. Chem. Soc. 136, 13727–13734 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Valdez, C. N., Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Catalytic hydrogen evolution from a covalently linked dicobaloxime. Proc. Natl Acad. Sci. USA 109, 15589–15593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, Y. et al. Singly versus doubly reduced nickel porphyrins for proton reduction: experimental and theoretical evidence for a homolytic hydrogen‐evolution reaction. Angew. Chem. Int. Ed. 55, 5457–5462 (2016).

    Article  CAS  Google Scholar 

  15. Guo, X. et al. Homolytic versus heterolytic hydrogen evolution reaction steered by a steric effect. Angew. Chem. Int. Ed. 59, 8941–8946 (2020).

    Article  CAS  Google Scholar 

  16. Pitman, C. L. & Miller, A. J. M. Molecular photoelectrocatalysts for visible light-driven hydrogen evolution from neutral water. ACS Catal. 4, 2727–2733 (2014).

    Article  CAS  Google Scholar 

  17. Stratakes, B. M. & Miller, A. J. M. H2 evolution at an electrochemical ‘underpotential’ with an iridium-based molecular photoelectrocatalyst. ACS Catal. 10, 9006–9018 (2020).

    Article  CAS  Google Scholar 

  18. Rivier, L. et al. Photoproduction of hydrogen by decamethylruthenocene combined with electrochemical recycling. Angew. Chem. Int. Ed. 56, 2324–2327 (2017).

    Article  CAS  Google Scholar 

  19. Rivier, L. et al. Mechanistic study on the photogeneration of hydrogen by decamethylruthenocene. Chem. Eur. J. 25, 12769–12779 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Huang, J., Sun, J., Wu, Y. & Turro, C. Dirhodium(II,II)/NiO photocathode for photoelectrocatalytic hydrogen evolution with red light. J. Am. Chem. Soc. 143, 1610–1617 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Chambers, M. B., Kurtz, D. A., Pitman, C. L., Brennaman, M. K. & Miller, A. J. M. Efficient photochemical dihydrogen generation initiated by a bimetallic self-quenching mechanism. J. Am. Chem. Soc. 138, 13509–13512 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Stratakes, B. M., Dempsey, J. L. & Miller, A. J. M. Determining the overpotential of electrochemical fuel synthesis mediated by molecular catalysts: recommended practices, standard reduction potentials, and challenges. ChemElectroChem 8, 4161–4180 (2021).

    Article  CAS  Google Scholar 

  23. Dadci, L. et al. π-Arene aqua complexes of cobalt, rhodium, iridium, and ruthenium: preparation, structure, and kinetics of water exchange and water substitution. Inorg. Chem. 34, 306–315 (1995).

    Article  CAS  Google Scholar 

  24. Pitman, C. L., Brereton, K. R. & Miller, A. J. M. Aqueous hydricity of late metal catalysts as a continuum tuned by ligands and the medium. J. Am. Chem. Soc. 138, 2252–2260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rountree, E. S., McCarthy, B. D., Eisenhart, T. T. & Dempsey, J. L. Evaluation of homogeneous electrocatalysts by cyclic voltammetry. Inorg. Chem. 53, 9983–10002 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Wadsworth, B. L., Beiler, A. M., Khusnutdinova, D., Reyes Cruz, E. A. & Moore, G. F. Interplay between light flux, quantum efficiency, and turnover frequency in molecular-modified photoelectrosynthetic assemblies. J. Am. Chem. Soc. 141, 15932–15941 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Nguyen, N. P., Wadsworth, B. L., Nishiori, D., Reyes Cruz, E. A. & Moore, G. F. Understanding and controlling the performance-limiting steps of catalyst-modified semiconductors. J. Phys. Chem. Lett. 12, 199–203 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Delahay, P. & Stiehl, G. L. Theory of catalytic polarographic currents. J. Am. Chem. Soc. 74, 3500–3505 (1952).

    Article  CAS  Google Scholar 

  29. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications (Wiley, 2000).

    Google Scholar 

  30. Costentin, C., Passard, G. & Savéant, J.-M. Benchmarking of homogeneous electrocatalysts: overpotential, turnover frequency, limiting turnover number. J. Am. Chem. Soc. 137, 5461–5467 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Weberg, A. B., Murphy, R. P. & Tomson, N. C. Oriented internal electrostatic fields: an emerging design element in coordination chemistry and catalysis. Chem. Sci. 13, 5432–5446 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang, X. Hydrophobic-lipophilic interactions. Aggregation and self-coiling of organic molecules. Acc. Chem. Res. 21, 362–367 (1988).

    Article  CAS  Google Scholar 

  33. Blesic, M. et al. Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem. 9, 481–490 (2007).

    Article  CAS  Google Scholar 

  34. Keijer, T., Bouwens, T., Hessels, J. & Reek, J. N. H. Supramolecular strategies in artificial photosynthesis. Chem. Sci. 12, 50–70 (2021).

    Article  CAS  Google Scholar 

  35. Pannwitz, A. et al. Roadmap towards solar fuel synthesis at the water interface of liposome membranes. Chem. Soc. Rev. 50, 4833–4855 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, Y.-H. et al. Brønsted acid scaling relationships enable control over product selectivity from O2 reduction with a mononuclear cobalt porphyrin catalyst. ACS Cent. Sci. 5, 1024–1034 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martin, D. J., Wise, C. F., Pegis, M. L. & Mayer, J. M. Developing scaling relationships for molecular electrocatalysis through studies of Fe-porphyrin-catalyzed O2 reduction. Acc. Chem. Res. 53, 1056–1065 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nie, W. & McCrory, C. C. L. Strategies for breaking molecular scaling relationships for the electrochemical CO2 reduction reaction. Dalton Trans. 51, 6993–7010 (2022).

    Article  CAS  PubMed  Google Scholar 

  39. Boulas, P. L., Go, M. & Echegoyen, L. Electrochemistry of supramolecular systems. Angew. Chem. Int. Ed. 37, 216–247 (1998).

    Article  CAS  Google Scholar 

  40. Wiester, M. J., Ulmann, P. A. & Mirkin, C. A. Enzyme mimics based upon supramolecular coordination chemistry. Angew. Chem. Int. Ed. 50, 114–137 (2011).

    Article  CAS  Google Scholar 

  41. Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 1: non-covalent interactions as a tool for building and modifying homogeneous catalysts. Chem. Soc. Rev. 43, 1660–1733 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Raynal, M., Ballester, P., Vidal-Ferran, A. & van Leeuwen, P. W. N. M. Supramolecular catalysis. Part 2: artificial enzyme mimics. Chem. Soc. Rev. 43, 1734–1787 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Zeng, T. et al. Hybrid bilayer membranes as platforms for biomimicry and catalysis. Nat. Rev. Chem. 6, 862–880 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Bonchio, M. et al. Hierarchical organization of perylene bisimides and polyoxometalates for photo-assisted water oxidation. Nat. Chem. 11, 146–153 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Nguyen, H. D., Jana, R. D., Campbell, D. T., Tran, T. V. & Do, L. H. Lewis acid-driven self-assembly of diiridium macrocyclic catalysts imparts substrate selectivity and glutathione tolerance. Chem. Sci. 14, 10264–10272 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu, J. et al. Artificial spherical chromatophore nanomicelles for selective CO2 reduction in water. Nat. Catal. 6, 464–475 (2023).

    Article  CAS  Google Scholar 

  47. Yang, B. et al. Self-assembled amphiphilic water oxidation catalysts: control of O−O bond formation pathways by different aggregation patterns. Angew. Chem. Int. Ed. 55, 6229–6234 (2016).

    Article  CAS  Google Scholar 

  48. White, C., Yates, A., Maitlis, P. M. & Heinekey, D. M. (η5-Pentamethylcyclopentadienyl)rhodium and -iridium compounds. In Inorganic Syntheses Vol. 29 (ed. Grimes, R. N.) 228–234 (Wiley, 1992).

  49. Himeda, Y., Onozawa-Komatsuzaki, N., Sugihara, H. & Kasuga, K. Simultaneous tuning of activity and water solubility of complex catalysts by acid-base equilibrium of ligands for conversion of carbon dioxide. Organometallics 26, 702–712 (2007).

    Article  CAS  Google Scholar 

  50. Schmehl, R. H. et al. Formation and photophysical properties of iron-ruthenium tetranuclear bipyridyl complexes of the type {[(bpy)2Ru(L-L)]3Fe}. Inorg. Chem. 25, 2440–2445 (1986).

    Article  CAS  Google Scholar 

  51. Furue, M. et al. Intramolecular energy transfer in covalently linked polypyridine ruthenium(II)/osmium(II) binuclear complexes. Ru(II)(bpy)2Mebpy– (CH2)n– MebpyOs(II)(bpy)2 (n = 2, 3, 5, and 7). Bull. Chem. Soc. Jpn 64, 1632–1640 (1991).

    Article  CAS  Google Scholar 

  52. Mulyana, Y. et al. Oligonuclear polypyridylruthenium(ii) complexes incorporating flexible polar and non-polar bridges: synthesis, DNA-binding and cytotoxicity. Dalton Trans. 40, 1510–1523 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Kühn, F. E. et al. Octahedral bipyridine and bipyrimidine dioxomolybdenum(VI) complexes: characterization, application in catalytic epoxidation, and density functional mechanistic study. Chem. Eur. J. 8, 2370–2383 (2002).

    Article  PubMed  Google Scholar 

  54. Griggs, C. G. & Smith, D. J. H. An improved synthesis of amphiphilic 4,4′-disubstituted 2,2′-bipyridines. J. Chem. Soc. Perkin Trans. 1 https://doi.org/10.1039/P19820003041 (1982).

  55. Rubinson, K. A. Practical corrections for p(H,D) measurements in mixed H2O/D2O biological buffers. Anal. Methods 9, 2744–2750 (2017).

    Article  CAS  Google Scholar 

  56. Krȩżel, A. & Bal, W. A formula for correlating pKa values determined in D2O and H2O. J. Inorg. Biochem. 98, 161–166 (2004).

    Article  PubMed  Google Scholar 

  57. Fulmer, G. R. et al. NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award DE-SC0014255 (principal investigator, A.J.M.M.). The NMR spectroscopy was supported by the National Science Foundation under grant CHE-1828183. The mass spectrometry was supported by the National Science Foundation under grant CHE-1726291. We acknowledge N. Kumarage for assistance with NMR spectral acquisition. We also acknowledge A. Tripathy, Director of the Macromolecular Interactions Facility where the DLS experiments were performed, for experimental assistance. The DLS experimental work was supported by the National Cancer Institute of the National Institutes of Health under award number P30CA016086. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We acknowledge A. Kumbhar for assistance with TEM imaging. The TEM work was performed at the Chapel Hill Analytical and Nanofabrication Laboratory, CHANL, a member of the North Carolina Research Triangle Nanotechnology Network, RTNN, which is supported by the National Science Foundation, grant ECCS-1542015, as part of the National Nanotechnology Coordinated Infrastructure, NNCI.

Author information

Authors and Affiliations

Authors

Contributions

T.L., J.R., A.G.B., M.B.C., C.L.P. and T.J. synthesized and characterized the iridium catalysts. I.N.C., T.L. and A.G.B. performed the CV studies. I.N.C., T.L., J.R. and T.J. conducted the CA and CPE studies. I.N.C., T.L. and M.A.t.H. analysed the catalyst aggregates using light scattering and NMR methods. A.J.M.M. conceived of the idea, directed the project and supervised the experimental design, execution and interpretation. I.N.C., T.L. and A.J.M.M. wrote the paper. All authors discussed the results and commented on the paper.

Corresponding author

Correspondence to Alexander J. M. Miller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–134 and Tables 1–4.

Supplementary Data 1

CA source data.

Supplementary Data 2

CV source data.

Supplementary Data 3

DLS source data.

Supplementary Data 4

UV–visible spectroscopy source data.

Source data

Source Data Fig. 3

CV and CA data.

Source Data Fig. 4

DLS data.

Source Data Fig. 5

CV and DLS data.

Source Data Fig. 6

CA source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cloward, I.N., Liu, T., Rose, J. et al. Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H2 evolution in water. Nat. Chem. (2024). https://doi.org/10.1038/s41557-024-01483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-024-01483-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing