Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Melting of hybrid organic–inorganic perovskites

Abstract

Several organic–inorganic hybrid materials from the metal–organic framework (MOF) family have been shown to form stable liquids at high temperatures. Quenching then results in the formation of melt-quenched MOF glasses that retain the three-dimensional coordination bonding of the crystalline phase. These hybrid glasses have intriguing properties and could find practical applications, yet the melt-quench phenomenon has so far remained limited to a few MOF structures. Here we turn to hybrid organic–inorganic perovskites—which occupy a prominent position within materials chemistry owing to their functional properties such as ion transport, photoconductivity, ferroelectricity and multiferroicity—and show that a series of dicyanamide-based hybrid organic–inorganic perovskites undergo melting. Our combined experimental–computational approach demonstrates that, on quenching, they form glasses that largely retain their solid-state inorganic–organic connectivity. The resulting materials show very low thermal conductivities (~0.2 W m−1 K−1), moderate electrical conductivities (10−3–10−5 S m−1) and polymer-like thermomechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glass formation from hybrid perovskites.
Fig. 2: Structural insights into melting and glass structure.
Fig. 3: Pair distribution function analysis.
Fig. 4: Physical properties of melt-quenched glasses.
Fig. 5: Comparison of physical properties of melt-quenched glasses with various materials.

Similar content being viewed by others

Data availability

Representative input files for the molecular dynamics simulations are available online in our data repository at https://github.com/fxcoudert/citable-data. The experimental data that support the findings of this study (characterization and analytical data for both crystalline and glass materials, structural refinements, a.c. electrical conductivity experiments and thermal conductivity measurements, source data for all experimental Supplementary figures) are available as Supplementary Information and in Symplectic Elements with the identifier https://doi.org/10.17863/CAM.63032.

References

  1. Mitzi, D. B. Introduction: Perovskites. Chem. Rev. 119, 3033–3035 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Article  Google Scholar 

  3. Li, W., Stroppa, A., Wang, Z.-M. & Gao, S. Hybrid Organic-Inorganic Perovskites (Wiley, 2020).

  4. Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).

    Article  CAS  PubMed  Google Scholar 

  5. Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Jain, P. et al. Multiferroic behavior associated with an order–disorder hydrogen bonding transition in metal–organic frameworks (MOFs) with the perovskite ABX3 architecture. J. Am. Chem. Soc. 131, 13625–13627 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, Y. et al. [Am]Mn(H2POO)3: a new family of hybrid perovskites based on the hypophosphite ligand. J. Am. Chem. Soc. 139, 16999–17002 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Bermudez-Garcia, J. M. et al. Role of temperature and pressure on the multisensitive multiferroic dicyanamide framework [TPrA][Mn(dca)3] with perovskite-like structure. Inorg. Chem. 54, 11680–11687 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Saparov, B. & Mitzi, D. B. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Egger, D. A., Rappe, A. M. & Kronik, L. Hybrid organic–inorganic perovskites on the move. Acc. Chem. Res. 49, 573–581 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, Y. H. et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Ou, T. J. et al. Visible light response, electrical transport, and amorphization in compressed organolead iodine perovskites. Nanoscale 8, 11426–11431 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Mitzi, D. B. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M=Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996).

    Article  CAS  Google Scholar 

  14. Gaillac, R. et al. Liquid metal–organic frameworks. Nat. Mater. 16, 1149–1154 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Bermudez-Garcia, J. M. et al. Multiple phase and dielectric transitions on a novel multi-sensitive [TPrA][M(dca)3] (M: Fe2+, Co2+ and Ni2+) hybrid inorganic–organic perovskite family. J. Mater. Chem. C 4, 4889–4898 (2016).

    Article  CAS  Google Scholar 

  16. Umeyama, D. et al. Reversible solid-to-liquid phase transition of coordination polymer crystals. J. Am. Chem. Soc. 137, 864–870 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Bermudez-Garcia, J. M. et al. A simple in situ synthesis of magnetic M@CNTs by thermolysis of the hybrid perovskite [TPrA][M(dca)3]. New J. Chem. 41, 3124–3133 (2017).

    Article  CAS  Google Scholar 

  18. Qiao, A. et al. A metal–organic framework with ultrahigh glass-forming ability. Sci. Adv. 4, eaao6827 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pell, A. J., Pintacuda, G. & Grey, C. P. Paramagnetic NMR in solution and the solid state. Prog. Nucl. Magn. Reson. Spectrosc. 111, 1–271 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Ishii, Y., Wickramasinghe, N. P. & Chimon, S. A new approach in 1D and 2D 13C high-resolution solid-state NMR spectroscopy of paramagnetic organometallic complexes by very fast magic-angle spinning. J. Am. Chem. Soc. 125, 3438–3439 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Kervern, G., Pintacuda, G. & Emsley, L. Fast adiabatic pulses for solid-state NMR of paramagnetic systems. Chem. Phys. Lett. 435, 157–162 (2007).

    Article  CAS  Google Scholar 

  22. Gougeon, R. et al. High-resolution solid-state nuclear magnetic resonance study of the tetrapropylammonium template in a purely siliceous MFI-type zeolite. Magn. Reson. Chem. 36, 415–421 (1998).

    Article  CAS  Google Scholar 

  23. Hing, A. W., Vega, S. & Schaefer, J. Transferred-echo double-resonance NMR. J. Magn. Reson. 96, 205–209 (1992).

    CAS  Google Scholar 

  24. Tucker, M. C. et al. Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries: a 7Li MAS NMR and SQUID study. J. Am. Chem. Soc. 124, 3832–3833 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Tauber, K., Dani, A. & Yuan, J. Y. Covalent cross-linking of porous poly(ionic liquid) membrane via a triazine network. Acs Macro. Lett. 6, 1–5 (2017).

    Article  Google Scholar 

  26. Kroke, E. et al. Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structures. New J. Chem. 26, 508–512 (2002).

    Article  CAS  Google Scholar 

  27. Silverstein, R. M., Webster, F. X., Kiemle, D. J. & Bryce, D. L. Spectrometric Identification of Organic Compounds 8th edn (Wiley, 2014).

  28. Orgel, L. E. Spectra of transition-metal complexes. J. Chem. Phys. 23, 1004–1014 (1955).

    Article  CAS  Google Scholar 

  29. Bo, S. H. et al. Thin-film and bulk investigations of LiCoBO3 as a Li-ion battery cathode. ACS Appl. Mater. Interfaces 6, 10840–10848 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Schlueter, J. A., Manson, J. L. & Geiser, U. Structural and magnetic diversity in tetraalkylammonium salts of anionic M[N(CN)2]3- (M = Mn and Ni) three-dimensional coordination polymers. Inorg. Chem. 44, 3194–3202 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Chakravarty, C., Debenedetti, P. G. & Stillinger, F. H. Lindemann measures for the solid-liquid phase transition. J. Chem. Phys. 126, 204508 (2007).

    Article  PubMed  Google Scholar 

  32. Leo, C. J., Rao, G. V. S. & Chowdari, B. V. R. Fast ion conduction in the Li-analogues of Nasicon, Li1 + x [(Ta1 – x Gex)Al](PO4)3. J. Mater. Chem. 12, 1848–1853 (2002).

    Article  CAS  Google Scholar 

  33. Chowdari, B. V. R., Yoo, H.-L., Choi, G. M. & Lee, J.-H. Solid State Ionics: The Science and Technology of Ions in Motion (World Scientific, 2004).

  34. Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nat. Mater. 7, 105–114 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Pisoni, A. et al. Ultra-low thermal conductivity in organic–inorganic hybrid perovskite CH3NH3PbI3. J. Phys. Chem. Lett. 5, 2488–2492 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Ye, T. et al. Ultra-high Seebeck coefficient and low thermal conductivity of a centimeter-sized perovskite single crystal acquired by a modified fast growth method. J. Mater. Chem. C 5, 1255–1260 (2017).

    Article  CAS  Google Scholar 

  38. Gunatilleke, W. D. C. B. et al. Thermal conductivity of a perovskite-type metal–organic framework crystal. Dalton Trans. 46, 13342–13344 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Huang, B. L. et al. Thermal conductivity of a metal-organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transfer 50, 405–411 (2007).

    Article  CAS  Google Scholar 

  40. Cui, B. Y. et al. Thermal conductivity of ZIF-8 thin-film under ambient gas pressure. ACS Appl. Mater. Interfaces 9, 28139–28143 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Bansal, N. P. & Doremus, R. H. Thermal Conductivity (Elsevier, 1986).

  42. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Bennett, T. D. et al. Melt-quenched glasses of metal–organic frameworks. J. Am. Chem. Soc. 138, 3484–3492 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Bansal, N. P. & Doremus, R. H. Electrical Conductivity (Elsevier, 1986).

  46. Wu, Y. et al. Hypophosphite hybrid perovskites: a platform for unconventional tilts and shifts. Chem. Commun. 54, 3751–3754 (2018).

    Article  CAS  Google Scholar 

  47. Gaultois, M. W. et al. Data-driven review of thermoelectric materials: performance and resource considerations. Chem. Mater. 25, 2911–2920 (2013).

    Article  CAS  Google Scholar 

  48. Russ, B. et al. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    Article  CAS  Google Scholar 

  49. Menard, K. P. & Menard, N. R. in Encyclopedia of Polymer Science and Technology 1–33 (Wiley, 2015).

  50. CES EduPack 2019 Software (Granta Design, 2019).

  51. Bermudez-Garcia, J. M. et al. Giant barocaloric tunability in [(CH3CH2CH2)4N]Cd[N(CN)2]3 hybrid perovskite. J. Mater. Chem. C 6, 9867–9874 (2018).

    Article  CAS  Google Scholar 

  52. Bermudez-Garcia, J. M. et al. Giant barocaloric effect in the ferroic organic-inorganic hybrid [TPrA][Mn(dca)3] perovskite under easily accessible pressures. Nat. Commun. 8, 15715 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Frentzel-Beyme, L. et al. Porous purple glass – a cobalt imidazolate glass with accessible porosity from a meltable cobalt imidazolate framework. J. Mat. Chem. A 7, 985–990 (2019).

    Article  CAS  Google Scholar 

  54. Li, G., Lee-Sullivan, P. & Thring, R. W. Determination of activation energy for glass transition of an epoxy adhesive using dynamic mechanical analysis. J. Therm. Anal. Calorim. 60, 377–390 (2000).

    Article  CAS  Google Scholar 

  55. Thurber, K. R. & Tycko, R. Measurement of sample temperatures under magic-angle spinning from the chemical shift and spin-lattice relaxation rate of 79Br in KBr powder. J. Magn. Reson. 196, 84–87 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Morcombe, C. R. & Zilm, K. W. Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 162, 479–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Fuller, M. P. & Griffiths, P. R. Diffuse reflectance measurements by infrared Fourier transform spectrometry. Anal. Chem. 50, 1906–1910 (1978).

    Article  CAS  Google Scholar 

  58. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).

    Article  CAS  Google Scholar 

  59. Soper, A. K. GudrunN and GudrunX: Programs for Correcting Raw Neutron and X-ray Diffraction Data to Differential Scattering Cross Section. Technical Report RAL-TR-2011-013 (2011).

  60. Soper, A. K. & Barney, E. R. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Crystallogr. 44, 714–726 (2011).

    Article  CAS  Google Scholar 

  61. VandeVondele, J. et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  62. To, T. et al. Fracture toughness of a metal–organic framework glass. Nat. Commun. 11, 2593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.K.S. thanks the Royal Society and the Science and Engineering Research Board of India (SERB) for their combined support in the form of a Newton International Fellowship (NIF\R1\180163). T.D.B. thanks the Royal Society for a University Research Fellowship (UF150021) and a research grant (RG94426), and the University of Canterbury Te Whare Wānanga o Waitaha, New Zealand for a University of Cambridge Visiting Canterbury Fellowship. T.D.B. and L.N.M. also thank the Leverhulme Trust for a Philip Leverhulme Prize. The EPSRC is acknowledged for a Doctoral Training Studentship to A.R.H., a PhD studentship award to A.F.S. under the industrial CASE scheme along with Johnson Matthey PLC (JM11106), and a PhD studentship award to A.P. via the National Productivity Investment Fund (EP/R51231X/1) and grant EP/K039687/1. M.D. and F.-X.C. acknowledge financial support from the Agence Nationale de la Recherche under the project “MATAREB” (ANR-18-CE29-0009-01) and access to high-performance computing platforms provided by GENCI grant A0070807069. A.D. acknowledges DST-INSPIRE (IF160050), Government of India, for awarding his fellowship. S.K.S. gratefully thanks DST, Government of India, for the infrastructural facilities. B.K.S. acknowledges R. Cornell (University of Cambridge) for his help with performing the dynamic-mechanical measurements. F.B. thanks K. J. Sanders (McMaster University) for assistance with the SHAPs pulses and K. Luzyanin (University of Liverpool) for collecting the liquid-state NMR data. J.M.B.-G. acknowledges Xunta de Galicia for a postdoctoral fellowship. X.M. is grateful for support from the Royal Society. M.F.T. would like to thank Corning Incorporated for project funding. We acknowledge the assistance of L. Longley (University of Cambridge) with calorimetric data analysis. The authors gratefully acknowledge the provision of synchrotron access to Beamline I15-1 (EE20038) at the Diamond Light Source, Rutherford Appleton Laboratory, UK.

Author information

Authors and Affiliations

Authors

Contributions

B.K.S. and T.D.B. designed the project. A.R.H., A.P. and F.B. performed all NMR experiments and analysed the data. S.M. collected the HRMS data and analysed them with F.B. The electrical conductivity measurements were performed by B.K.S. and A.D. The electrical conductivity data were analysed by B.K.S. and S.K.S. The X-ray total scattering data were collected by T.D.B., A.F.S., M.F.T., L.N.M., D.A.K., D.S.K. and P.A.C. The total scattering data were analysed by B.K.S., D.A.K., A.F.S. and T.D.B. Interpretation and analysis of calorimetric data were aided by J.M.B.-G. and X.M. Molecular simulations were performed by M.D. and F.-X.C. who also analysed the data. B.K.S. collected and analysed all other data. All authors participated in manuscript writing, led by T.D.B. and B.K.S.

Corresponding author

Correspondence to Thomas D. Bennett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Maria Senaris-Rodriguez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–60 and Tables 1–4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaw, B.K., Hughes, A.R., Ducamp, M. et al. Melting of hybrid organic–inorganic perovskites. Nat. Chem. 13, 778–785 (2021). https://doi.org/10.1038/s41557-021-00681-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00681-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing