Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex

Abstract

Many molecular machines with controllable molecular-scale motors have been developed. However, transmitting molecular movement to the macroscopic scale remains a formidable challenge. Here we report a single crystal of a Ni complex whose shape changes abruptly and reversibly in response to thermal changes at around room temperature. Variable-temperature single-crystal X-ray diffraction studies show that the crystalline shape change is induced by an unusual 90° rotation of uniaxially aligned oxalate molecules. The oxalate dianions behave as molecular-scale rotors, with their movement propagated through the entire crystalline material via intermolecular hydrogen bonding. Consequently, the subnanometre-scale changes in the oxalate molecules are instantly amplified to a micrometre-scale contraction or expansion of the crystal, accompanied by a thermal hysteresis loop. The shape change in the crystal was clearly detected under an optical microscope. The large directional deformation and prompt response suggest a role for this material in microscale or nanoscale thermal actuators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of 1 at different temperatures.
Figure 2: Temperature dependence of differential scanning calorimetry and heat capacity for 1.
Figure 3: Crystal deformation induced by ox2− reorientation.

Similar content being viewed by others

References

  1. Kobatake, S., Takami, S., Muto, H., Ishikawa, T. & Irie, M. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446, 778–781 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, Y. L., Nakano, M. & Ikeda, T. Directed bending of a polymer film by light. Nature 425, 145–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Hosono, N. et al. Large-area three-dimensional molecular ordering of a polymer brush by one-step processing. Science 330, 808–811 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Ma, M. M., Guo, L., Anderson, D. G. & Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 339, 186–189 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    Article  CAS  Google Scholar 

  6. Badjic, J. D., Balzani, V., Credi, A., Silvi, S. & Stoddart, J. F. A molecular elevator. Science 303, 1845–1849 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Bruns, C. J. & Stoddart, J. F. Molecular machines muscle up. Nature Nanotech. 8, 9–10 (2013).

    Article  CAS  Google Scholar 

  9. Browne, W. R. & Feringa, B. L. Making molecular machines work. Nature Nanotech. 1, 25–35 (2006).

    Article  CAS  Google Scholar 

  10. Vogelsberg, C. S. & Garcia-Garibay, M. A. Crystalline molecular machines: function, phase order, dimensionality, and composition. Chem. Soc. Rev. 41, 1892–1910 (2012).

    CAS  PubMed  Google Scholar 

  11. Du, G. Y., Moulin, E., Jouault, N., Buhler, E. & Giuseppone, N. Muscle-like supramolecular polymers: integrated motion from thousands of molecular machines. Angew. Chem. Int. Ed. 51, 12504–12508 (2012).

    Article  CAS  Google Scholar 

  12. Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nature Chem. 6, 229–235 (2014).

    Article  CAS  Google Scholar 

  13. Garcia-Garibay, M. A. Molecular crystals on the move: from single-crystal-to-single-crystal photoreactions to molecular machinery. Angew. Chem. Int. Ed. 46, 8945–8947 (2007).

    Article  CAS  Google Scholar 

  14. Goodwin, A. L. Organic crystals: packing down. Nature Mater. 9, 7–8 (2010).

    Article  CAS  Google Scholar 

  15. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nature Mater. 9, 36–39 (2010).

    Article  CAS  Google Scholar 

  16. Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nature Chem. 4, 456–460 (2012).

    Article  CAS  Google Scholar 

  17. Nath, N. K., Panda, M. K., Sahoo, S. C. & Naumov, P. Thermally induced and photoinduced mechanical effects in molecular single crystals—a revival. CrystEngComm 16, 1850–1858 (2014).

    Article  CAS  Google Scholar 

  18. Zhou, H. L. et al. Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework. Nature Commun. 4, 2534 (2013).

    Article  Google Scholar 

  19. Lange, C. W. et al. Photomechanical properties of rhodium(I)–semiquinone complexes. The structure, spectroscopy, and magnetism of (3,6-di-tert-butyl-1,2-semiquinonato)dicarbonylrhodium(I). J. Am. Chem. Soc. 114, 4220–4222 (1992).

    Article  CAS  Google Scholar 

  20. Irie, M. Photochromism and molecular mechanical devices. Bull. Chem. Soc. Jpn 81, 917–926 (2008).

    Article  CAS  Google Scholar 

  21. Sokolov, A. N., Swenson, D. C. & MacGillivray, L. R. Conformational polymorphism in a heteromolecular single crystal leads to concerted movement akin to collective rack-and-pinion gears at the molecular level. Proc. Natl Acad. Sci. USA 105, 1794–1797 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayami, S., Gu, Z. Z., Yoshiki, H., Fujishima, A. & Sato, O. Iron(III) spin-crossover compounds with a wide apparent thermal hysteresis around room temperature. J. Am. Chem. Soc. 123, 11644–11650 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Padmanabhan, M., Joseph, J. C., Huang, X. & Li, J. Diamine incorporated compounds derived from polymeric nickel(II) fumarates and oxalates: crystal structure, spectral and thermal properties of [Ni(en)3](O2CCHCHCO2)·3H2O and [Ni(en)3](O2CCO2). J. Mol. Struct. 885, 36–44 (2008).

    Article  CAS  Google Scholar 

  24. Fortes, A. D., Suard, E. & Knight, K. S. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331, 742–746 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Goodwin, A. L. et al. Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. Science 319, 794–797 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, X., Viney, C., Johnson, E. R., Wang, C. & Lu, J. Q. Large negative thermal expansion of a polymer driven by a submolecular conformational change. Nature Chem. 5, 1035–1041 (2013).

    Article  CAS  Google Scholar 

  27. Wu, Y. et al. Negative thermal expansion in the metal–organic framework material Cu3(1,3,5-benzenetricarboxylate)2 . Angew. Chem. Int. Ed. 47, 8929–8932 (2008).

    Article  CAS  Google Scholar 

  28. Goodwin, A. L., Chapman, K. W. & Kepert, C. J. Guest-dependent negative thermal expansion in nanoporous Prussian blue analogues MIIPtIV(CN)6·x{H2O} (0 ≤ x ≤ 2; M = Zn, Cd). J. Am. Chem. Soc. 127, 17980–17981 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Margadonna, S., Prassides, K. & Fitch, A. N. Zero thermal expansion in a Prussian blue analogue. J. Am. Chem. Soc. 126, 15390–15391 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Birkedal, H., Schwarzenbach, D. & Pattison, P. Observation of uniaxial negative thermal expansion in an organic crystal. Angew. Chem. Int. Ed. 41, 754–756 (2002).

    Article  CAS  Google Scholar 

  31. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  32. Chen, C. L., Goforth, A. M., Smith, M. D., Su, C. Y. & zur Loye, H. C. [Co2(ppca)2(H2O)(V4O12)0.5]: a framework material exhibiting reversible shrinkage and expansion through a single-crystal-to-single-crystal transformation involving a change in the cobalt coordination environment. Angew. Chem. Int. Ed. 44, 6673–6677 (2005).

    Article  CAS  Google Scholar 

  33. van Delden, R. A., Koumura, N., Harada, N. & Feringa, B. L. Unidirectional rotary motion in a liquid crystalline environment: color tuning by a molecular motor. Proc. Natl Acad. Sci. USA 99, 4945–4949 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Steiner, T. The hydrogen bond in the solid state. Angew. Chem. Int. Ed. 41, 48–76 (2002).

    Article  CAS  Google Scholar 

  36. Kume, Y., Miyazaki, Y., Matsuo, T. & Suga, H. Low temperature heat capacities of ammonium hexachlorotellurate and its deuterated analog. J. Phys. Chem. Solids 53, 1297–1304 (1992).

    Article  CAS  Google Scholar 

  37. Ichikawa, M. & Matsuo, T. Deuteration-induced structural phase transitions in some hydrogen-bonded crystals. J. Mol. Struct. 378, 17–27 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a KAKEN on Innovative Areas (‘Soft Molecular Systems’ Area 2503, No. 26104528) from MEXT (Japan). Z-S.Y. thanks the China Scholarship Council for support.

Author information

Authors and Affiliations

Authors

Contributions

Z-S.Y. and O.S. designed the study, conducted experiments and wrote most of the paper. M.M. and S. Kang assisted in measuring the change in crystal shape. K.T., K.Z. and S. Kanegawa contributed to the diffraction studies. T.K., Y.S. and K.Y. performed the calculations and wrote the related discussion. N.A. and Y.M. performed the heat-capacity measurements. T.N. contributed to analyses of the molecular motion. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Osamu Sato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 5509 kb)

Supplementary video

Supplementary video 1 (MOV 575 kb)

Supplementary video

Supplementary video 2 (MOV 445 kb)

Supplementary information

Crystallographic data for compound 1 at 243 K, LT phase. (CIF 283 kb)

Supplementary information

Crystallographic data for compound 1 at 263 K, HT phase. (CIF 77 kb)

Supplementary information

Crystallographic data for compound 1 at 263 K, LT phase. (CIF 281 kb)

Supplementary information

Crystallographic data for compound 1 at 283 K, HT phase. (CIF 137 kb)

Supplementary information

Crystallographic data for compound 2 at 223 K, LT phase. (CIF 322 kb)

Supplementary information

Crystallographic data for compound 2 at 293 K, HT phase. (CIF 103 kb)

Supplementary information

Crystallographic data for compound 3 at 200 K, LT phase. (CIF 634 kb)

Supplementary information

Crystallographic data for compound 3 at 288 K, HT phase. (CIF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, ZS., Mito, M., Kamachi, T. et al. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. Nature Chem 6, 1079–1083 (2014). https://doi.org/10.1038/nchem.2092

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2092

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing