Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room temperature

Abstract

Developing homogeneous catalysts that convert CS2 and COS pollutants into environmentally benign products is important for both fundamental catalytic research and applied environmental science. Here we report a series of air-stable dimeric Pd complexes that mediate the facile hydrolytic cleavage of both CS2 carbon–sulfur bonds at 25 °C to produce CO2 and trimeric Pd complexes. Oxidation of the trimeric complexes with HNO3 regenerates the dimeric starting complexes with the release of SO2 and NO2. Isotopic labelling confirms that the carbon and oxygen atoms of CO2 originate from CS2 and H2O, respectively, and reaction intermediates were observed by gas-phase and electrospray ionization mass spectrometry, as well as by Fourier transform infrared spectroscopy. We also propose a plausible mechanistic scenario based on the experimentally observed intermediates. The mechanism involves intramolecular attack by a nucleophilic Pd–OH moiety on the carbon atom of coordinated µ-OCS2, which on deprotonation cleaves one C–S bond and simultaneously forms a C–O bond. Coupled C–S cleavage and CO2 release to yield [(bpy)3Pd33-S)2](NO3)2 (bpy, 2,2′-bipyridine) provides the thermodynamic driving force for the reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Converting CS2 into CO2 using dimeric palladium complexes in water.
Figure 2: Monitoring the reaction of CS2 with 0.05 M aqueous 2a·2NO3 by ESI–MS as a function of time.
Figure 3: Proposed mechanism for the reaction of 2a2+ with CS2 from DFT calculations.

Similar content being viewed by others

References

  1. Topsøe, H. et al. The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts. Catal. Today 107–108, 12–22 (2005).

    Article  Google Scholar 

  2. Wang, L., He, W. & Yu, Z. Transition-metal mediated carbon–sulfur bond activation and transformations. Chem. Soc. Rev. 42, 599–621 (2013).

    Article  CAS  Google Scholar 

  3. Gary, J. H., Handwerk, G. E. & Kaiser, M. J. Petroleum Refining: Technology and Economics (CRC, 2007).

    Google Scholar 

  4. Stavtsov, A. K., Drozdovskii, V. N., Irklei, V. M., Mokrousova, L. A. & Napalkova, T. A. Effect of carbon disulfide consumption on the basic properties of viscose prepared from radiation-modified cellulose. Fibre Chem. 23, 396–399 (1992).

    Article  Google Scholar 

  5. Notholt, J. et al. Enhanced upper tropical tropospheric COS: impact on the stratospheric aerosol layer. Science 300, 307–310 (2003).

    Article  CAS  Google Scholar 

  6. Sze, N. D. & Ko, M. K. W. CS2 and COS in the stratospheric sulphur budget. Nature 280, 308–310 (1979).

    Article  CAS  Google Scholar 

  7. Sze, N. D. & Ko, M. K. W. Is CS2 a precursor for atmospheric COS? Nature 278, 731–732 (1979).

    Article  CAS  Google Scholar 

  8. Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B. & Hamill, P. OCS, stratospheric aerosols and climate. Nature 283, 283–285 (1980).

    Article  CAS  Google Scholar 

  9. Cox, R. A. & Sheppard, D. Reactions of OH radicals with gaseous sulphur compounds. Nature 284, 330–331 (1980).

    Article  CAS  Google Scholar 

  10. Deshmukh, M. M., Ohba, M., Kitagawa, S. & Sakaki, S. Absorption of CO2 and CS2 into the Hofmann-type porous coordination polymer: electrostatic versus dispersion interactions. J. Am. Chem. Soc. 135, 4840–4849 (2013).

    Article  CAS  Google Scholar 

  11. Wang, X. Q. et al. Adsorption of carbon disulfide on Cu/CoSPc/Ce modified activated carbon under microtherm and micro-oxygen conditions. Ind. Eng. Chem. Res. 53, 13626–13634 (2014).

    Article  CAS  Google Scholar 

  12. Cullis, C. F. & Mulcahy, M. F. R. The kinetics of combustion of gaseous sulphur compounds. Combust. Flame 18, 225–292 (1972).

    Article  CAS  Google Scholar 

  13. Laperdrix, E. et al. Comparative study of CS2 hydrolysis catalyzed by alumina and titania. Appl. Catal. B 17, 167–173 (1998).

    Article  CAS  Google Scholar 

  14. Mukherjee, S., Das, S. K. & Biswas, M. N. Absorption of carbon disulphide in alkaline solution in spray and ejector columns. Chem. Eng. Process. 46, 181–186 (2007).

    Article  CAS  Google Scholar 

  15. Azatyan, V. V. The role of a reaction of direct substitution for a sulfur atom in the CS2 molecule in the combustion of carbon disulfide with oxygen. Kinet. Catal. 44, 459–462 (2003).

    Article  CAS  Google Scholar 

  16. Tong, S., Dalla Lana, I. G. & Chuang, K. T. Kinetic modeling of the hydrolysis of carbon disulfide catalyzed by either titania or alumina. Can. J. Chem. Eng. 73, 220–227 (1995).

    Article  CAS  Google Scholar 

  17. Smeulders, M. J. et al. Evolution of a new enzyme for carbon disulphide conversion by an acidothermophilic archaeon. Nature 478, 412–416 (2011).

    Article  CAS  Google Scholar 

  18. Wang, J. C., Zlotnick, A. & Mecinović, J. Transmission electron microscopy enables the reconstruction of the catenane and ring forms of CS2 hydrolase. Chem. Commun. 50, 10281–10283 (2014).

    Article  CAS  Google Scholar 

  19. Werner, H. Novel coordination compounds formed from CS2 and heteroallenes. Coord. Chem. Rev. 43, 165–185 (1982).

    Article  CAS  Google Scholar 

  20. Pandey, K. K. Reactivities of carbonyl sulfide (COS), carbon disulfide (CS2) and carbon dioxide (CO2) with transition metal complexes. Coord. Chem. Rev. 140, 37–114 (1995).

    Article  CAS  Google Scholar 

  21. Ibers, J. A. Centenary Lecture. Reactivities of carbon disulphide, carbon dioxide, and carbonyl sulphide towards some transition-metal systems. Chem. Soc. Rev. 11, 57–73 (1982).

    Article  CAS  Google Scholar 

  22. Lide, D. R. CRC Handbook of Chemistry and Physics (CRC, 2004).

    Google Scholar 

  23. Johnson, A. R. et al. Four-coordinate molybdenum chalcogenide complexes relevant to nitrous oxide N−N bond cleavage by three-coordinate molybdenum(III): synthesis, characterization, reactivity, and thermochemistry. J. Am. Chem. Soc. 120, 2071–2085 (1998).

    Article  CAS  Google Scholar 

  24. Ballmann, J. et al. Complete disassembly of carbon disulfide by a ditantalum complex. Chem. Commun. 46, 8794–8796 (2010).

    Article  CAS  Google Scholar 

  25. Kallane, S. I. et al. Remarkable reactivity of a rhodium(I) boryl complex towards CO2 and CS2: isolation of a carbido complex. Chem. Commun. 51, 14613–14616 (2015).

    Article  Google Scholar 

  26. Ariafard, A., Brookes, N. J., Stranger, R. & Yates, B. F. Activation of CS2 and CS by ML3 complexes. J. Am. Chem. Soc. 130, 11928–11938 (2008).

    Article  CAS  Google Scholar 

  27. Thiemann, M., Scheibler, E. & Wiegand, K. W. in Ullmann's Encyclopedia of Industrial Chemistry (Wiley-VCH, 2000); http://onlinelibrary.wiley.com/doi/10.1002/14356007.a17_293/full

    Google Scholar 

  28. Farrar, D. H., Gukathasan, R. R. & Morris, S. A. Reaction of carbon disulfide with trinuclear palladium and platinum clusters. Crystal structure of Pt2(μ-CS2)2(P(t-Bu)2Ph)2 . Inorg. Chem. 23, 3258–3261 (1984).

    Article  CAS  Google Scholar 

  29. Kullberg, M. L. & Kubiak, C. P. Insertions of small molecules, carbon monoxide, methyl isocyanide, sulfur dioxide, and carbon disulphide, into the Pd–Pd σ-bond of Pd2Cl2(PMe2CH2PMe2)2. Crystal and molecular structure of Pd2(μ-CO)Cl2(PMe2CH2PMe2)2 . Inorg. Chem. 25, 26–30 (1986).

    Article  CAS  Google Scholar 

  30. Bradford, A. M., Jennings, M. C. & Puddephatt, R. J. Scope and mechanism of oxidative addition of carbon-sulfur double bonds to trinuclear platinum and palladium complexes. Organometallics 8, 2367–2371 (1989).

    Article  CAS  Google Scholar 

  31. Ingram, A. J., Solis-Ibarra, D., Zare, R. N. & Waymouth, R. M. Trinuclear Pd3O2 intermediate in aerobic oxidation catalysis. Angew. Chem. Int. Ed. 53, 5648–5652 (2014).

    Article  CAS  Google Scholar 

  32. Widegren, J. A. & Finke, R. G. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal–particle heterogeneous catalysis under reducing conditions. J. Mol. Catal. A 198, 317–341 (2003).

    Article  CAS  Google Scholar 

  33. Tzeng, B.-C. et al. Palladium(II) and platinum(II) analogues of luminescent diimine Triangulo complexes supported by triply bridging sulfide ligands: structural and spectroscopic comparisons. Inorg. Chem. 40, 6699–6704 (2001).

    Article  CAS  Google Scholar 

  34. Ingram, A. J., Walker, K. L., Zare, R. N. & Waymouth, R. M. Catalytic role of multinuclear palladium–oxygen intermediates in aerobic oxidation followed by hydrogen peroxide disproportionation. J. Am. Chem. Soc. 137, 13632–13646 (2015).

    Article  CAS  Google Scholar 

  35. Leoni, P. et al. Synthesis and structure of Pd4(μ-PtBu2)2(μ-CS2)(PPh3)2I2, a neutral palladium(I) derivative with a hexacoordinate carbon and a CS2 molecule bridging four palladium centers. J. Am. Chem. Soc. 119, 8625–8629 (1997).

    Article  CAS  Google Scholar 

  36. Tzeng, B.-C., Wu, Y.-L. & Kuo, J.-H. Supramolecular assembly of Triangulo Pd(II) diimine complexes containing triply-bridging sulfide ligands. J. Chin. Chem. Soc. 53, 1033–1038 (2006).

    Article  CAS  Google Scholar 

  37. Pugh, L., Rao, K. N. & Rao, K. N. in Molecular Spectroscopy: Modern Research, Vol. II (ed. Rao, K. N.) 165 (Academic, 1976).

    Google Scholar 

  38. Person, W. B., Brown, K. G., Steele, D. & Peters, D. Ab initio calculations of vibrational properties of some linear triatomic molecules. 1. Intensities. J. Phys. Chem. 85, 1998–2007 (1981).

    Article  CAS  Google Scholar 

  39. Adrian, R. A., Zhu, S., Klausmeyer, K. K. & Walmsley, J. A. Synthesis and X-ray crystal structure determination of monomeric cis-Pd(2,2′-bipyridine)(NO3)2 . Inorg. Chem. Commun. 10, 1527–1530 (2007).

    Article  CAS  Google Scholar 

  40. Fulmer, G. R., Herndon, A. N., Kaminsky, W., Kemp, R. A. & Goldberg, K. I. Hydrogenolysis of palladium(II) hydroxide, phenoxide, and alkoxide complexes. J. Am. Chem. Soc. 133, 17713–17726 (2011).

    Article  CAS  Google Scholar 

  41. Yu, S.-Y. et al. Solution self-assembly, spontaneous deprotonation, and crystal structures of bipyrazolate-bridged metallomacrocycles with dimetal centers. Inorg. Chem. 44, 9471–9488 (2005).

    Article  CAS  Google Scholar 

  42. Tong, J., Yu, S.-Y. & Li, H. Programmable self-assembly of homo- or hetero-metallomacrocycles using 4-(1H-pyrazolyl-4-yl)pyridine. Chem. Commun. 48, 5343–5345 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Grant numbers 21471011, 21574135, 91127039, 51303180, 21203245, 21532005, 21327010), the Beijing Natural Science Foundation (Grant 2162043), the One Hundred Talents Program, the Chinese Academy of Sciences, the Importation and Development of High-Caliber Talents Project of the Beijing Municipal Institution and Beijing Postdoctoral Research Foundation (Grant 2015M570017) and the Beijing Synchrotron Radiation Facility for crystal structure determination using synchrotron radiation X-ray diffraction analysis. We also thank H. Ma (Beijing Institute of Technology) for the X-ray crystallography. Research at Northwestern University is supported by the US National Science Foundation under grant CHE-1464488. The Northwestern CleanCat Core Facility acknowledges funding from the US Department of Energy (Grant DE-FG02-03ER15457) used for the purchase of the portable universal gas analyser. We thank N. M. Schweitzer for supporting the mass spectroscopy.

Author information

Authors and Affiliations

Authors

Contributions

S.-Y.Y. and H.H. conceived the study. H.H., S.-Y.Y., M.D., T.L.L. and T.J. M. planned the research. X.-F.J., H.H. and T.L.L. synthesized and characterized the compounds. Y.-J.P. and Y.-F.C conducted the on-line ESI experiments and analysis. W.L. conducted the DFT calculations. H.H., X.-F.J., T.L.L., S.-Y.Y., W.L., M.D. and T.J.M. prepared the manuscript. All the authors commented on the manuscript.

Corresponding authors

Correspondence to Hui Huang, Shu-Yan Yu, Wenzhen Lai, Yuan-Jiang Pan, Massimiliano Delferro or Tobin J. Marks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2558 kb)

Supplementary information

Crystallographic data for compound 1a (CIF 3029 kb)

Supplementary information

Crystallographic data for compound 2b (CIF 225 kb)

Supplementary information

Crystallographic data for compound 3a (CIF 5348 kb)

Supplementary information

Crystallographic data for compound 3b (CIF 3309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, XF., Huang, H., Chai, YF. et al. Hydrolytic cleavage of both CS2 carbon–sulfur bonds by multinuclear Pd(II) complexes at room temperature. Nature Chem 9, 188–193 (2017). https://doi.org/10.1038/nchem.2637

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2637

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing