Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A photoswitchable polar crystal that exhibits superionic conduction

Abstract

Ionic conductors serve as solid electrolytes for fuel cells and batteries, whereas polar crystals such as ferroelectrics and pyroelectrics—which are typically insulating materials—are used in electronic devices. Here we show a material that combines superionic conductivity with a polar crystal structure at room temperature. This three-dimensional anionic network is based on –Fe–N≡C–Mo– units, with Cs cations hosted in every other pore. In the resulting Cs1.1Fe0.95[Mo(CN)5(NO)]·4H2O material, the negative and positive charges of the framework and Cs+ ions, respectively, are non-symmetrically shifted in the c-axis direction of the unit cell, and spontaneous electric polarization is generated, in turn leading to second harmonic generation (SHG). Additionally, this material is a superionic conductor (with an ionic conductivity value of 4 × 10−3 S cm−1 at 318 K). Furthermore, the ionic conductivity significantly decreases under 532 nm light irradiation (from 1 × 10−3 S cm−1 to 6 × 10−5 S cm−1 at room temperature) and, when irradiation stops, returns to its original value within ~1 h.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and crystal structure of CsFeMo.
Fig. 2: Characterization of the spectroscopic properties of CsFeMo.
Fig. 3: Superionic conductivity in CsFeMo.
Fig. 4: Optical switching of the ionic conductivity of CsFeMo.

Similar content being viewed by others

Data availability

X-ray crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) with reference no. 1907012. A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information. Data are also available from the corresponding author upon reasonable request.

References

  1. Angell, C. A., Liu, C. & Sanchez, E. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362, 137–139 (1993).

    Article  CAS  Google Scholar 

  2. Tiyapiboonchaiya, C. et al. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 3, 29–32 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Makiura, R. et al. Size-controlled stabilization of the superionic phase to room temperature in polymer-coated AgI nanoparticles. Nat. Mater. 8, 476–480 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Kreuer, K. D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    Article  CAS  Google Scholar 

  7. MacFarlane, D. R., Huang, J. & Forsyth, M. Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature 402, 792–794 (1999).

    Article  CAS  Google Scholar 

  8. Colomban, Ph Proton Conductors: Solids, Membranes and Gels—Materials and Devices (Cambridge Univ. Press, 1992).

  9. Mcgeehin, P. & Hooper, A. Fast ion conduction materials. J. Mater. Sci. 12, 1–27 (1977).

    Article  CAS  Google Scholar 

  10. Richards, W. D. et al. Design and synthesis of the superionic conductor Na10SnP2S12. Nat. Commun. 7, 11009 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hayashi, A., Noi, K. & Tatsumisago, M. Superionic glass–ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Article  PubMed  CAS  Google Scholar 

  12. Kreuer, K.-D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel-cell applications: simulations, elementary reaction, and phenomenology. Chem. Rev. 104, 4637–4678 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  15. Ohkoshi, S., Arai, K., Sato, Y. & Hashimoto, K. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly. Nat. Mater. 3, 857–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nat. Chem. 1, 695–704 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Horcajada, P. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 9, 172–178 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Bogani, L. & Wernsdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 7, 179–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Bureekaew, S. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nat. Mater. 8, 831–836 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Yamada, T., Sadakiyo, M. & Kitagawa, H. High proton conductivity of one-dimensional ferrous oxalate dihydrate. J. Am. Chem. Soc. 131, 3144–3145 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Ohkoshi, S. et al. High proton conductivity in Prussian blue analogs and the interference effect by magnetic ordering. J. Am. Chem. Soc. 132, 6620–6621 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 974–986 (2013).

    Article  CAS  Google Scholar 

  23. Coronado, E. & Espallargas, G. M. Dynamic magnetic MOFs. Chem. Soc. Rev. 42, 1525–1539 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Pardo, E. et al. High proton conduction in a chiral ferromagnetic metal–organic quartz-like framework. J. Am. Chem. Soc. 133, 15328–15331 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. O̅kawa, H. et al. Proton-conductive magnetic metal–organic frameworks, {NR3(CH2COOH)} [Ma IIMb III(ox)3]: effect of carboxyl residue upon proton conduction. J. Am. Chem. Soc. 135, 2256–2262 (2013).

    Article  PubMed  CAS  Google Scholar 

  26. Yang, F. et al. A flexible metal–organic framework with a high density of sulfonic acid sites for proton conduction. Nat. Energy 2, 877–883 (2017).

    Article  CAS  Google Scholar 

  27. Feynman, R. P. Slow electrons in a polar crystal. Phys. Rev. 97, 660–665 (1955).

    Article  CAS  Google Scholar 

  28. Wang, H. et al. Thermally stable nonlinear optical activity in a smectic-A liquid crystal. Nature 384, 244–247 (1996).

    Article  CAS  Google Scholar 

  29. Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Mandal, P. et al. Designing switchable polarization and magnetization at room temperature in an oxide. Nature 525, 363–366 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. Pan, R. P., Wei, H. D. & Shen, Y. R. Optical second-harmonic generation from magnetized surfaces. Phys. Rev. B 39, 1229–1234 (1989).

    Article  CAS  Google Scholar 

  32. Katz, H. E. et al. Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers. Science 254, 1485–1487 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Chen, C. et al. Design and synthesis of an ultraviolet-transparent nonlinear optical crystal Sr2Be2B2O7. Nature 373, 322–324 (1995).

    Article  CAS  Google Scholar 

  34. Berger, V. Nonlinear photonic crystals. Phys. Rev. Lett. 81, 4136–4139 (1998).

    Article  CAS  Google Scholar 

  35. Fiebig, M., Lottermoser, Th, Fröhlich, D., Goltsev, A. V. & Pisarev, R. V. Observation of coupled magnetic and electric domains. Nature 419, 818–820 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Campagnola, P. J. & Loew, L. M. Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat. Biotechnol. 21, 1356–1360 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Train, C., Nuida, T., Gheorghe, R., Gruselle, M. & Ohkoshi, S. Large magnetization-induced second harmonic generation in an enantiopure chiral magnet. J. Am. Chem. Soc. 131, 16838–16843 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Ohkoshi, S. et al. 90-degree optical switching of output second harmonic light in chiral photomagnet. Nat. Photon. 8, 65–71 (2014).

    Article  CAS  Google Scholar 

  39. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hsieh, C.-L., Pu, Y., Grange, R., Laporte, G. & Psaltis, D. Imaging with second-harmonic radiation probes in living tissue. Biomed. Opt. Express 2, 2532–2539 (2012).

    Google Scholar 

  41. Pantazis, P., Maloney, J., Wu, D. & Fraser, S. E. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proc. Natl Acad. Sci. USA 107, 14535–14540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakayama, Y. et al. Tunable nanowire nonlinear optical probe. Nature 447, 1098–1102 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Hsieh, C.-L., Grange, R., Pu, Y. & Psaltis, D. Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging. Opt. Express 17, 2880–2891 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Xuan, L. et al. Photostable second-harmonic generation from a single KTiOPO4 nanocrystal for nonlinear microscopy. Small 4, 1332–1336 (2008).

    Article  CAS  Google Scholar 

  45. Delahaye, E. et al. Second harmonic generation from individual hybrid MnPS3-based nanoparticles investigated by nonlinear microscopy. Chem. Phys. Lett. 429, 533–537 (2006).

    Article  CAS  Google Scholar 

  46. Bonacina, L. et al. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Appl. Phys. B 87, 399–403 (2007).

    Article  CAS  Google Scholar 

  47. Deyneko, D. V. et al. Ferroelectricity, ionic conductivity and structural paths for large cation migration in Ca10.5−xPbx(VO4)7 single crystals, x = 1.9, 3.5, 4.9. CrystEngComm 21, 1309–1319 (2019).

    Article  CAS  Google Scholar 

  48. Renz, F. et al. Strong field iron(ii) complex converted by light into a long-lived high-spin state. Angew. Chem. Int. Ed. 39, 3699–3700 (2000).

    Article  CAS  Google Scholar 

  49. Ohkoshi, S. et al. Cesium detection by terahertz light. Sci. Rep. 7, 8088 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hauser, U., Oestreich, V. & Rohrweck, H. D. On optical dispersion in transparent molecular systems. Z. Phys. A 280, 17–25 (1977).

    Article  CAS  Google Scholar 

  51. Coppens, P., Novozhilova, I. & Kovalevsky, A. Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem. Rev. 102, 861–883 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Gütlich, P., Garcia, Y. & Woike, T. Photoswitchable coordination compounds. Coord. Chem. Rev. 219–221, 839–879 (2001).

    Article  Google Scholar 

  53. Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Margadonna, S., Prassides, K. & Fitch, A. N. Large lattice responses in a mixed-valence prussian blue analogue owing to electronic and spin transitions induced by X-ray irradiation. Angew. Chem. Int. Ed. 43, 6316–6319 (2004).

    Article  CAS  Google Scholar 

  55. Polli, D. et al. Coherent orbital waves in the photo-induced insulator–metal dynamics of a magnetoresistive manganite. Nat. Mater. 6, 643–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Ohkoshi, S. et al. Synthesis of a metal oxide with a room-temperature photoreversible phase transition. Nat. Chem. 2, 539–545 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Irie, M., Fukaminato, T., Sasaki, T., Tamai, N. & Kawai, T. A digital fluorescent molecular photoswitch. Nature 420, 759–760 (2002).

    Article  CAS  PubMed  Google Scholar 

  58. Decurtins, S., Gütlich, P., Köhler, C. P., Spiering, H. & Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: the hexa-1-propyltetrazole-iron(ii) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 105, 1–4 (1984).

    Article  CAS  Google Scholar 

  59. Ohkoshi, S., Imoto, K., Tsunobuchi, Y., Takano, S. & Tokoro, H. Light-induced spin-crossover magnet. Nat. Chem. 3, 564–569 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Heintze, E. et al. Dynamic control of magnetic nanowires by light-induced domain-wall kickoffs. Nat. Mater. 12, 202–206 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Tokoro, H. et al. External stimulation-controllable heat-storage ceramics. Nat. Commun. 6, 7037 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Bertoni, R. et al. Elastically driven cooperative response of a molecular material impacted by a laser pulse. Nat. Mater. 15, 606–610 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The present research was supported partly by a JSPS Grant-in-Aid for Specially Promoted Research (grant 15H05697). We also recognize the Cryogenic Research Center, The University of Tokyo and the Center for Nano Lithography & Analysis, The University of Tokyo, which are supported by MEXT. We thank M. Komura, M. Numanyu and T. Chiba of Olympus Corporation for the SHG microscopy imaging.

Author information

Authors and Affiliations

Authors

Contributions

S.O. designed and coordinated this study, contributed to all measurements and analyses, and wrote the paper. K.N. conducted the conductivity measurements. K.I. conducted the 57Fe Mössbauer spectrum measurements and conductivity measurements. H.T. contributed to the setup of the conductivity measurements and IR measurement systems. Y.S. contributed to the sample characterization, SHG and THz-TDS measurements. K.O. contributed to the sample preparation and TG measurements. Y.M. contributed to the crystal structure analysis. M.K. contributed to the IR measurements. M.Y. contributed to SEM and optical microscopy imaging and partially wrote the paper. A.N. contributed to the analyses of crystal structure and IR spectra, and helped prepare the figures.

Corresponding author

Correspondence to Shin-ichi Ohkoshi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video 1, SEM image and size distribution, crystal structure analysis, terahertz-time domain spectrum, magnetic properties, SHG measurements, photoswitching effect of ionic conductivity, and differential infrared spectra before and after light irradiation.

Crystallographic data

Crystallographic Information File for CsFeMo, CCDC 1907012

Crystallographic data

Structure factors for CsFeMo, CCDC 1907012

Supplementary Video 1

Polar crystal exhibiting a superionic conductivity and optical-switching effect

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohkoshi, Si., Nakagawa, K., Imoto, K. et al. A photoswitchable polar crystal that exhibits superionic conduction. Nat. Chem. 12, 338–344 (2020). https://doi.org/10.1038/s41557-020-0427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0427-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing