Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complexes featuring a linear [N≡U≡N] core isoelectronic to the uranyl cation

Abstract

The aqueous chemistry of uranium is dominated by the linear uranyl cation [UO2]2+, yet the isoelectronic nitrogen-based analogue of this ubiquitous cation, molecular [UN2], has so far only been observed in an argon matrix. Here, we present three different complexes of [UN2] obtained by the reaction of the uranium pentahalides UCl5 or UBr5 with anhydrous liquid ammonia. The [UN2] moieties are linear, with the U atoms coordinated by five additional ligands (ammonia, chloride or bromide), resulting in a pentagonal bipyramidal coordination sphere that is also commonly adopted by the uranyl cation [UO2(L)5]2+ (L, ligand). In all three cases, the nitrido ligands are further coordinated through their lone pairs by the Lewis-acidic ligands [U(NH3)8]4+ to form almost linear, trinuclear complex cations. Those were characterized by single-crystal X-ray diffraction, Raman and infrared spectroscopy, 14N/15N isotope studies and quantum chemical calculations, which support the presence of two U≡N triple bonds within the [UN2] moieties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative Lewis structures and structures of cations 18+, 27+ and 36+ in their crystal structures, showing the central [N≡U≡N] units.
Fig. 2: Raman spectra of the compound 2Br7·10.5NH3 with a natural 14N/15N isotope ratio and the isotope-labelled compound with 15NH3.
Fig. 3: IBOs corresponding to the U≡N triple bonds in the [UN2] molecule and cation 18+.

Similar content being viewed by others

Data availability

The data supporting the findings of this study (powder X-ray patterns, Raman and infrared spectra, and details of the quantum chemical calculations) are available within this Article and its Supplementary Information. Crystallographic data are available free of charge through the Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk), with CCDC nos. 1868200 for (1Br8·26NH3), 1984956 (2Br7·10.5NH3) and 1868199 (3Cl6·6NH3). Source data are provided with this paper.

References

  1. Hunt, R. D., Yustein, J. T. & Andrews, L. Matrix infrared spectra of NUN formed by the insertion of uranium atoms into molecular nitrogen. J. Chem. Phys. 98, 6070–6074 (1993).

    CAS  Google Scholar 

  2. Wang, X., Andrews, L., Vlaisavljevich, B. & Gagliardi, L. Combined triple and double bonds to uranium: the N≡U═N-H uranimine nitride molecule prepared in solid argon. Inorg. Chem. 50, 3826–3831 (2011).

    CAS  PubMed  Google Scholar 

  3. Andrews, L. et al. Infrared spectra and electronic structure calculations for NN complexes with U, UN and NUN in solid argon, neon and nitrogen. J. Phys. Chem. A 118, 5289–5303 (2014).

    CAS  PubMed  Google Scholar 

  4. Andrews, L., Wang, X., Gong, Y., Vlaisavljevich, B. & Gagliardi, L. Infrared spectra and electronic structure calculations for the NUN(NN)1–5 and NU(NN)1–6 complexes in solid argon. Inorg. Chem. 52, 9989–9993 (2013).

    CAS  PubMed  Google Scholar 

  5. Falcone, M., Chatelain, L., Scopelliti, R., Živković, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).

    CAS  PubMed  Google Scholar 

  6. Cleaves, P. A. et al. Terminal uranium(v/vi) nitride activation of carbon dioxide and carbon disulfide: factors governing diverse and well-defined cleavage and redox reactions. Chem. Eur. J. 23, 2950–2959 (2017).

    CAS  PubMed  Google Scholar 

  7. Falcone, M., Poon, L. N., Fadaei, T. F. & Mazzanti, M. Reversible dihydrogen activation and hydride transfer by a uranium nitride complex. Angew. Chem. Int. Ed. 57, 3697–3700 (2018).

    CAS  Google Scholar 

  8. Fox, A. R., Bart, S. C., Meyer, K. & Cummins, C. C. Towards uranium catalysts. Nature 455, 341–349 (2008).

    CAS  PubMed  Google Scholar 

  9. Fox, A. R., Arnold, P. L. & Cummins, C. C. Uranium–nitrogen multiple bonding: isostructural anionic, neutral and cationic uranium nitride complexes featuring a linear U═N═U core. J. Am. Chem. Soc. 132, 3250–3251 (2010).

    CAS  PubMed  Google Scholar 

  10. Rogozkin, B. D., Stepennova, N. M., Bergman, G. A. & Proshkin, A. A. Thermochemical stability, radiation testing, fabrication and reprocessing of mononitride fuel. At. Energy 95, 835–844 (2003).

    CAS  Google Scholar 

  11. Matthews, R. B., Chidester, K. M., Hoth, C. W., Mason, R. E. & Petty, R. L. Fabrication and testing of uranium nitride fuel for space power reactors. J. Nucl. Mater. 151, 345–345 (1988).

    Google Scholar 

  12. Diaconescu, P. Actinide chemistry: a tale of two nitrides. Nat. Chem. 2, 705–706 (2010).

    CAS  PubMed  Google Scholar 

  13. Generation IV International Forum. Technology Roadmap Update for Generation IV Nuclear Energy Systems (OECD, 2014).

  14. King, D. M. et al. Isolation and characterization of a uranium(vi)–nitride triple bond. Nat. Chem. 5, 482–488 (2013).

    CAS  PubMed  Google Scholar 

  15. Gardner, B. M. et al. Triamidoamine uranium(iv)–arsenic complexes containing one-, two- and three-fold U–As bonding interactions. Nat. Chem. 7, 582–590 (2015).

    CAS  PubMed  Google Scholar 

  16. Hayton, T. W. et al. Synthesis of imido analogs of the uranyl ion. Science 310, 1941–1943 (2005).

    CAS  PubMed  Google Scholar 

  17. King, D. M. & Liddle, S. T. Progress in molecular uranium-nitride chemistry. Coord. Chem. Rev. 266/267, 2–15 (2014).

    Google Scholar 

  18. King, D. M. et al. Synthesis and structure of a terminal uranium nitride complex. Science 337, 717–720 (2012).

    CAS  PubMed  Google Scholar 

  19. Camp, C., Pécaut, J. & Mazzanti, M. Tuning uranium–nitrogen multiple bond formation with ancillary siloxide ligands. J. Am. Chem. Soc. 135, 12101–12111 (2013).

    CAS  PubMed  Google Scholar 

  20. Evans, W. J., Kozimor, S. A. & Ziller, J. W. Molecular octa-uranium rings with alternating nitride and azide bridges. Science 309, 1835–1838 (2005).

    CAS  PubMed  Google Scholar 

  21. Kushto, G. P., Souter, P. F. & Andrews, L. An infrared spectroscopic and quasirelativistic theoretical study of the coordination and activation of dinitrogen by thorium and uranium atoms. J. Chem. Phys. 108, 7121–7130 (1998).

    CAS  Google Scholar 

  22. Andrews, L., Wang, X., Lindh, R., Roos, B. O. & Marsden, C. J. Simple N≡UF3 and P≡UF3 molecules with triple bonds to uranium. Angew. Chem. Int. Ed. 47, 5366–5370 (2008).

    CAS  Google Scholar 

  23. Fox, A. R. & Cummins, C. C. Uranium–nitrogen multiple bonding: the case of a four-coordinate uranium(vi) nitridoborate complex. J. Am. Chem. Soc. 131, 5716–5717 (2009).

    CAS  PubMed  Google Scholar 

  24. Evans, W. J., Miller, K. A., Ziller, J. W. & Greaves, J. Analysis of uranium azide and nitride complexes by atmospheric pressure chemical ionization mass spectrometry. Inorg. Chem. 46, 8008–8018 (2007).

    CAS  PubMed  Google Scholar 

  25. Anderson, N. H. et al. Elucidating bonding preferences in tetrakis(imido)uranate(vi) dianions. Nat. Chem. 9, 850–855 (2017).

    CAS  PubMed  Google Scholar 

  26. Schmidt, A.-C., Heinemann, F. W., Maron, L. & Meyer, K. A series of uranium(iv, v, vi) tritylimido complexes, their molecular and electronic structures and reactivity with CO2. Inorg. Chem. 53, 13142–13153 (2014).

    CAS  PubMed  Google Scholar 

  27. Rudel, S. S. et al. Recent advances in the chemistry of uranium halides in anhydrous ammonia. Z. Kristallogr. Cryst. Mater. 233, 817–844 (2018).

    CAS  Google Scholar 

  28. Berthet, J.-C., Siddredi, G., Thuery, P. & Ephritikhine, M. Synthesis and crystal structure of pentavalent uranyl complexes. The remarkable stability of UO2X (X = I, SO3CF3) in non-aqueous solutions. Dalton Trans. 14, 3478–3494 (2009).

    Google Scholar 

  29. Berthet, J.-C., Nierlich, M., Miquel, Y., Madic, C. & Ephritikhine, M. Selective complexation of uranium(iii) over lanthanide(iii) triflates by 2,2':6',2''-terpyridine. X-ray crystal structures of [M(OTf)3(terpy)2] and [M(OTf)2(terpy)2(py)][OTf] (M = Nd, Ce, U) and of polynuclear μ-oxo uranium(iv) complexes resulting from hydrolysis. Dalton Trans. 2005, 369–379 (2005).

    Google Scholar 

  30. Fortier, S., Brown, J. L., Kaltsoyannis, N., Wu, G. & Hayton, T. W. Synthesis, molecular and electronic structure of UV(O)[N(SiMe3)2]3. Inorg. Chem. 51, 1625–1633 (2012).

    CAS  PubMed  Google Scholar 

  31. Gardner, B. M. et al. Homologation and functionalization of carbon monoxide by a recyclable uranium complex. Proc. Natl Acad. Sci. USA 109, 9265–9270 (2012).

    CAS  PubMed  Google Scholar 

  32. Olovsson, I. The crystal structures of the triammines of the ammonium halides. Acta Chem. Scand. 14, 1453–1465 (1960).

    CAS  Google Scholar 

  33. Olovsson, I. The crystal structure of tetrammineammonium iodide. Acta Chem. Scand. 14, 1466–1474 (1960).

    CAS  Google Scholar 

  34. Roßmeier, T. Supramolekulare Chemie mit Ammoniak—Strukturchemie neuer Ammoniak-Proton-Komplexe (Regensburg, 2005).

  35. Roßmeier, T., Reil, M. & Korber, N. First characterization of the ammine–ammonium complex [{NH4(NH3)4}2(μ-NH3)2]2+ in the crystal structure of [NH4(NH3)4][B(C6H5)4]·NH3 and the [NH4(NH3)4]+ complex in [NH4(NH3)4][Ca(NH3)7]As3S6·2NH3 and [NH4(NH3)4][Ba(NH3)8]As3S6·NH3. Inorg. Chem. 43, 2206–2212 (2004).

  36. Roßmeier, T. & Korber, N. First characterization of an extended ammonium–ammonia complex [NH4(NH3)4+(μ-NH3)2] in the crystal structure of [NH4(NH3)4][Co(C2B9H11)2]·2NH3. Z. Anorg. Allg. Chem. 630, 2665–2668 (2004).

  37. Schmidt, K. H. & Müller, A. Vibrational spectra and force constants of pure ammine complexes. Coord. Chem. Rev. 19, 41–97 (1976).

    CAS  Google Scholar 

  38. Wagner, W. D. & Nakamoto, K. Resonance Raman spectra of nitridoiron(v) porphyrin intermediates produced by laser photolysis. J. Am. Chem. Soc. 111, 1590–1598 (1989).

    CAS  Google Scholar 

  39. Bullock, J. I. Raman and infrared spectroscopic studies of the uranyl ion: the symmetric stretching frequency, force constants and bond lengths. J. Chem. Soc. A 1969, 781–784 (1969).

    Google Scholar 

  40. Nocton, G. et al. Synthesis, structure and bonding of stable complexes of pentavalent uranyl. J. Am. Chem. Soc. 132, 495–508 (2010).

    CAS  PubMed  Google Scholar 

  41. Juza, R. & Meyer, W. Über uran-nitrid-chlorid, -bromid und -jodid. Z. Anorg. Allg. Chem. 366, 43–50 (1969).

    CAS  Google Scholar 

  42. Murasik, A., Furrer, A. & Szczepaniak, W. Crystal-field levels in UBr3 determined by neutron spectroscopy. Solid State Commun. 33, 1217–1219 (1980).

    CAS  Google Scholar 

  43. Knizia, G. Intrinsic atomic orbitals: an unbiased bridge between quantum theory and chemical concepts. J. Chem. Theory Comput. 9, 4834–4843 (2013).

    CAS  PubMed  Google Scholar 

  44. Kaltsoyannis, N. Computational study of analogues of the uranyl ion containing the −NUN− unit: density functional theory calculations on UO22+, UON+, UN2, UO(NPH3)3+, U(NPH3)24+, [UCl4{NPR3}2] (R = H, Me), and [UOCl4{NP(C6H5)3}]. Inorg. Chem. 39, 6009–6017 (2000).

    CAS  PubMed  Google Scholar 

  45. Wei, F., Wu, G., Schwarz, W. H. E. & Li, J. Geometries, electronic structures and excited states of UN2, NUO+ and UO22+: a combined CCSD(T), RAS/CASPT2 and TDDFT study. Theor. Chem. Acc. 129, 467–481 (2011).

    CAS  Google Scholar 

  46. Scheibe, B., Rudel, S. S., Buchner, M. R., Karttunen, A. J. & Kraus, F. A 1D coordination polymer of UF5 with HCN as a ligand. Chem. Eur. J. 23, 291–295 (2017).

    CAS  PubMed  Google Scholar 

  47. Brown, D., Berry, J. A. & Holloway, J. H. Halogen exchange reactions involving uranium-(v) and -(vi) halides. J. Chem. Soc. Dalton Trans. 1982, 1385–1388 (1982).

    Google Scholar 

  48. Deubner, H. L. et al. A revised structure model for the UCl6 structure type, novel modifications of UCl6 and UBr5, and a comment on the modifications of protactinium pentabromides. Chem. Eur. J. 25, 6402–6411 (2019).

    CAS  PubMed  Google Scholar 

  49. STOE WinXPOW (STOE & Cie, 2015); https://www.stoe.com/

  50. X-Area (STOE & Cie, 2018); https://www.stoe.com/

  51. X-RED32 (STOE & Cie, 2012); https://www.stoe.com/

  52. X-SHAPE (STOE & Cie, 2013); https://www.stoe.com/

  53. LANA—Laue Analyzer (STOE & Cie, 2019); https://www.stoe.com/

  54. Sheldrick, G. M. SHELXS-97 (1997); http://shelx.uni-ac.gwdg.de/SHELX/index.php

  55. Sheldrick, G. M. SHELXT—integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 71, 3–8 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Sheldrick, G. M. SHELXL-2016/6 (2016); http://shelx.uni-ac.gwdg.de/SHELX/index.php

  57. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Crystallogr. 44, 1281–1284 (2011).

    PubMed  PubMed Central  Google Scholar 

  58. OPUS (Bruker Optik, 2009); https://www.bruker.com/

  59. Ahlrichs, R., Bär, M., Häser, M., Horn, H. & Kölmel, C. Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162, 165–169 (1989).

    CAS  Google Scholar 

  60. TURBOMOLE versions 7.2 and 7.3 (TURBOMOLE, 2017); http://www.turbomole.com

  61. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  62. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    CAS  Google Scholar 

  63. Schäfer, A., Huber, C. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J. Chem. Phys. 100, 5829–5835 (1994).

    Google Scholar 

  64. Cao, X. & Dolg, M. Segmented contraction scheme for small-core actinide pseudopotential basis sets. J. Mol. Struct. THEOCHEM 673, 203–209 (2004).

    CAS  Google Scholar 

  65. Küchle, W., Dolg, M., Stoll, H. & Preuss, H. Energy-adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide. J. Chem. Phys. 100, 7535–7542 (1994).

    Google Scholar 

  66. Eichkorn, K., Treutler, O., Öhm, H., Häser, M. & Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials. Chem. Phys. Lett. 240, 283–290 (1995).

    CAS  Google Scholar 

  67. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    CAS  PubMed  Google Scholar 

  68. Sierka, M., Hogekamp, A. & Ahlrichs, R. Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation. J. Chem. Phys. 118, 9136–9148 (2003).

    CAS  Google Scholar 

  69. Klamt, A. & Schürmann, G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993).

    Google Scholar 

  70. Rappoport, D. & Furche, F. Lagrangian approach to molecular vibrational Raman intensities using time-dependent hybrid density functional theory. J. Chem. Phys. 126, 201104 (2007).

    PubMed  Google Scholar 

  71. Knizia, G. & Klein, J. E. M. N. Electron flow in reaction mechanisms—revealed from first principles. Angew. Chem. Int. Ed. 54, 5518–5522 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

S.S.R. and F.K. thank the Deutsche Forschungsgemeinschaft for generous funding. A.J.K. thanks CSC, the Finnish IT Center for Science, for computational resources. We thank B. Roling for use of his Raman spectrometer. We thank U. Müller for bringing [UN2] to our attention many years ago.

Author information

Authors and Affiliations

Authors

Contributions

S.S.R. conceived and designed experiments and interpreted crystal structures, powder patterns and spectra for 18+ and 36+. S.S.R. and M.M. performed experiments and analytics on 18+ and 36+. M.M. contributed to the manuscript. H.L.D. conceived, designed and performed experiments on 27+. H.L.D. and M.M. interpreted the single-crystal structure of 27+. A.J.K. conceived and designed the quantum chemical calculations, interpreted results and wrote the theoretical parts of the manuscript. F.K. designed and guided research and interpreted the single-crystal structure determinations, powder patterns and spectra. S.S.R. and F.K. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Florian Kraus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Raman spectra of 1Br8·26NH3 and 3Cl6·6NH3 measured in fused-silica tubes at room temperature.

a, 1Br8·26NH3 in NH3 crystallized at −40 °C. b, Decomposition product of 1Br8·26NH3 in NH3 obtained at room temperature. c, Solution over 1Br8·26NH3 in NH3. d) 3Cl6·6NH3 in NH3 obtained at room temperature. Bands at 850–950 cm−1 are assigned to the U≡N stretching vibration. The abbreviation rt means room temperature, the laser wavelength was λ = 532 nm.

Extended Data Fig. 2 Simulated Raman spectra for cations 18+, 27+, and 36+ at DFT-PBE0/TZVP level of theory.

a, Cation 18+. b, Cation 27+. c, Cation 36+. The grey peaks are the raw data, the black curve has been obtained from the peak data by applying Lorenzian broadening (see computational details).

Extended Data Fig. 3 Diamond ATR-FTIR spectra of the decomposition products of 1Br8·26NH3 and 3Cl6·6NH3.

a, b, Decomposition products of 1Br8·26NH3 (a) and 3Cl6·6NH3 (b) both after removal of liquid ammonia at room temperature. Uranyl impurities would result in a band at ~911–960 cm−1. The abbreviation rt stands for room temperature.

Extended Data Fig. 4 Powder X-ray diffraction pattern of the residue of the reaction of UBr5 with ammonia after heating to 600 °C in a sealed steel ampoule under argon.

Reflection positions of UNBr are marked with red strokes, those of UBr3 with blue strokes. Reflections marked with an asterisk belong to a yet unidentified compound. Measured using CuKα1 radiation in a 0.3 mm capillary.

Extended Data Fig. 5 Valence IBOs for cation 18+. Valence IBOs for cation 18+.

a, Uter−µ-N interaction. b, U−NH3 interaction. c) N−H bond. The red and green orbitals are the IBOs; atom colour code: U, cyan; N, blue; H, white. The valence IBOs shown in Fig. 3 (main text) and the four singly-occupied IBOs with four unpaired f-electrons of the Uter atom are omitted. For further details, see the caption of Fig. 3 (main text). The Isovalue for IBO isosurface plots is 0.08 a.u.

Supplementary information

Supplementary Information

Synthesis of starting materials, Supplementary Figs. 1–4, Tables 1–4 and references.

Supplementary Data 1

Crystallographic data for compound 1Br8·26NH3 (CCDC 1868200).

Supplementary Data 2

Crystallographic data for compound 2Br7·10.5NH3 (CCDC 1984956).

Supplementary Data 3

Crystallographic data for compound 3Cl6·6NH3 (CCDC 1868199).

Source data

Source Data 1

Reference orbitals for intrinsic bond orbital (IBO) analysis.

Source Data 2

Cartesian coordinates of the studied systems in XYZ format.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudel, S.S., Deubner, H.L., Müller, M. et al. Complexes featuring a linear [N≡U≡N] core isoelectronic to the uranyl cation. Nat. Chem. 12, 962–967 (2020). https://doi.org/10.1038/s41557-020-0505-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0505-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing