Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface control by chemical and dimensional matching in an oxide heterostructure

Abstract

Interfaces between different materials underpin both new scientific phenomena, such as the emergent behaviour at oxide interfaces, and key technologies, such as that of the transistor. Control of the interfaces between materials with the same crystal structures but different chemical compositions is possible in many materials classes, but less progress has been made for oxide materials with different crystal structures. We show that dynamical self-organization during growth can create a coherent interface between the perovskite and fluorite oxide structures, which are based on different structural motifs, if an appropriate choice of cations is made to enable this restructuring. The integration of calculation with experimental observation reveals that the interface differs from both the bulk components and identifies the chemical bonding requirements to connect distinct oxide structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural matching of fluorite and perovskite structures for layer-by-layer growth.
Figure 2: Structural and chemical measurements of the cations at the LaAlO3/Ln0.5Zr0.5O1.75 interface.
Figure 3: Establishing the interface structure by identification of the oxide anion sublattice.
Figure 4: Crystal-chemistry description of the restructured interface based on bonding, metric and composition.

Similar content being viewed by others

References

  1. Kroemer, H. Nobel Lecture. Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

    Article  CAS  Google Scholar 

  2. Chambers, S. A. Stability at the surface. Science 346, 1186–1187 (2014).

    Article  CAS  Google Scholar 

  3. Douglas, J. P. Si/SiGe heterostructures: from material and physics to devices and circuits. Semicond. Sci. Tech. 19, R75–R108 (2004).

    Article  Google Scholar 

  4. Jain, S. C., Willander, M., Narayan, J. & Overstraeten, R. V. III–Nitrides: growth, characterization, and properties. J. Appl. Phys. 87, 965–1006 (2000).

    Article  CAS  Google Scholar 

  5. Chakhalian, J., Millis, A. J. & Rondinelli, J. Whither the oxide interface. Nature Mater. 11, 92–94 (2012).

    Article  CAS  Google Scholar 

  6. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  7. Tsukazaki, A. et al. Quantum Hall effect in polar oxide heterostructures. Science 315, 1388–1391 (2007).

    Article  CAS  Google Scholar 

  8. Kozuka, Y. et al. Two-dimensional normal-state quantum oscillations in a superconducting heterostructure. Nature 462, 487–490 (2009).

    Article  CAS  Google Scholar 

  9. Demkov, A. A. & Posadas, A. B. Integration of Functional Oxides with Semiconductors 1st edn (Springer-Verlag, 2014).

    Book  Google Scholar 

  10. Bauer, E. & van der Merwe, J. H. Structure and growth of crystalline superlattices: from monolayer to superlattice. Phys. Rev. B 33, 3657–3671 (1986).

    Article  CAS  Google Scholar 

  11. Shih, H.-Y. et al. Ultralow threading dislocation density in GaN epilayer on near-strain-free GaN compliant buffer layer and its applications in hetero-epitaxial LEDs. Sci. Rep. 5, 13671 (2015).

    Article  Google Scholar 

  12. Bollmann, W. Crystal Defects and Crystalline Interfaces (Springer-Verlag, 1970).

    Book  Google Scholar 

  13. Erwin, S. C., Gao, C., Roder, C., Lähnemann, J. & Brandt, O. Epitaxial interfaces between crystallographically mismatched materials. Phys. Rev. Lett. 107, 026102 (2011).

    Article  Google Scholar 

  14. Benedek, R., Seidman, D. N. & Woodward, C. The effect of misfit on heterophase interface energies. J. Phys. A 14, 2877 (2002).

    CAS  Google Scholar 

  15. Chen, Y. Z. et al. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3 . Nature Commun. 4, 1371 (2013).

    Article  CAS  Google Scholar 

  16. Prasad, B. D. et al. Effect of substrate materials on laser deposited Nd1.85Ce0.15CuO4−y films. J. Mater. Res. 9, 1376–1383 (1994).

    Article  Google Scholar 

  17. Nie, Y. F. et al. Atomically precise interfaces from non-stoichiometric deposition. Nature Commun. 5, 4530 (2014).

    Article  CAS  Google Scholar 

  18. Yan, L. et al. Unit-cell-level assembly of metastable transition-metal oxides by pulsed-laser deposition. Angew. Chem. Int. Ed. 46, 4539–4542 (2007).

    Article  CAS  Google Scholar 

  19. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

    Article  CAS  Google Scholar 

  20. Cavallaro, A. et al. Electronic nature of the enhanced conductivity in YSZ–STO multilayers deposited by PLD. Solid State Ionics 181, 592–601 (2010).

    Article  CAS  Google Scholar 

  21. Garcia-Barriocanal, J. et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680 (2008).

    Article  CAS  Google Scholar 

  22. Pennycook, T. J. et al. Seeing oxygen disorder in YSZ/SrTiO3 colossal ionic conductor heterostructures using EELS. Eur. Phys. J. Appl. Phys. 54, 33507 (2011).

    Article  Google Scholar 

  23. Mitchell, R. H. Perovskites: Modern and Ancient (Almaz Press, 2002).

    Google Scholar 

  24. Tilley, R. J. D. Crystals and Crystal Structures (Wiley, 2006).

    Google Scholar 

  25. Cavallaro, A., Ballesteros, B., Bachelet, R. & Santiso, J. Heteroepitaxial orientation control of YSZ thin films by selective growth on SrO-, TiO2-terminated SrTiO3 crystal surfaces. CrystEngComm 13, 1625–1631 (2011).

    Article  CAS  Google Scholar 

  26. Pergolesi, D., Fronzi, M., Fabbri, E., Tebano, A. & Traversa, E. Growth mechanisms of ceria- and zirconia-based epitaxial thin films and hetero-structures grown by pulsed laser deposition. Mater. Renew. Sustain. Energy 2, 6 (2013).

    Article  Google Scholar 

  27. Inoue, T., Morimoto, T., Kaneko, S., Horii, Y. & Ohki, Y. Crystalline structures of YAlO3 single crystal at high temperatures. Proceedings of 2014 International Symposium on Electrical Insulating Materials (ISEIM) 208–211 (Institute of Electrical Engineers Japan, 2014).

  28. Payne, J. L., Tucker, M. G. & Evans, I. R. From fluorite to pyrochlore: characterisation of local and average structure of neodymium zirconate, Nd2Zr2O7 . J. Solid State Chem. 205, 29–34 (2013).

    Article  CAS  Google Scholar 

  29. Wang, Z. L. & Shapiro, A. J. Studies of LaAlO3{100} surfaces using RHEED and REM. I: Twins, steps and dislocations. Surf. Sci. 328, 141–158 (1995).

    Article  CAS  Google Scholar 

  30. Lanier, C. H. et al. Surface reconstruction with a fractional hole: (√5×√5)R26.6° LaAlO3 (001). Phys. Rev. Lett. 98, 086102 (2007).

    Article  CAS  Google Scholar 

  31. Yamamura, H., Nishino, H., Kakinuma, K. & Nomura, K. Crystal phase and electrical conductivity in the pyrochlore-type composition systems, Ln2Ce2O7 (Ln = La, Nd, Sm, Eu, Gd, Y and Yb). J. Ceram. Soc. Jpn 111, 902–906 (2003).

    Article  CAS  Google Scholar 

  32. Dyer, M. S., Darling, G. R., Claridge, J. B. & Rosseinsky, M. J. Chemical bonding and atomic structure in Y2O3:ZrO2–SrTiO3 layered heterostructures. Angew. Chem. Int. Ed. 51, 3418–3422 (2012).

    Article  CAS  Google Scholar 

  33. Ray, S. P., Stubican, V. S. & Cox, D. E. Neutron diffraction investigation of Zr3Y4O12 . Mater. Res. Bull. 15, 1419–1423 (1980).

    Article  CAS  Google Scholar 

  34. Smith, D. K. & Newkirk, W. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 . Acta Crystallogr. 18, 983–991 (1965).

    Article  CAS  Google Scholar 

  35. Grey, I. E., Mumme, W. G., Ness, T. J., Roth, R. S. & Smith, K. L. Structural relations between weberite and zirconolite polytypes—refinements of doped 3T and 4M Ca2Ta2O7 and 3T CaZrTi2O7 . J. Solid State Chem. 174, 285–295 (2003).

    Article  CAS  Google Scholar 

  36. Orlov, I., Palatinus, L., Arakcheeva, A. & Chapuis, G. Hexagonal ferrites: a unified model of the (TS)nT series in superspace. Acta Crystallogr. B 63, 703–712 (2007).

    Article  CAS  Google Scholar 

  37. Windt, D. L. IMD–software for modeling the optical properties of multilayer films. Comput. Phys. 12, 360–370 (1998).

    Article  CAS  Google Scholar 

  38. Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. PhD thesis, Arizona State Univ. (2002).

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Engineering and Physics Research Council under EP/H000925/1. M.J.R. is a Royal Society Research Professor. S.T. gratefully acknowledges the FWO (Fonds Voor Wetenschappelijk Onderzoek) for a post-doctoral scholarship and for funding under project number G004413N. The microscope used for this work was partially funded by the Hercules Foundation of the Flemish government.

Author information

Authors and Affiliations

Authors

Contributions

M.J.R. and J.B.C. developed the concept for the study; M.O.S. designed the experiments, along with J.A., and prepared and characterized the thin films; M.S.D. performed the computational analysis, J.H. and A.M.A. performed and analysed the STEM, S.T. performed and analysed the EELS. M.O.S. and M.J.R. wrote the first draft. All the authors discussed the results and further developed the manuscript.

Corresponding author

Correspondence to Matthew J. Rosseinsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 8421 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O'Sullivan, M., Hadermann, J., Dyer, M. et al. Interface control by chemical and dimensional matching in an oxide heterostructure. Nature Chem 8, 347–353 (2016). https://doi.org/10.1038/nchem.2441

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2441

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing