Optics and photonics

  • Article
    | Open Access

    Slow nonlinearities of a free-running microresonator-filtered fibre laser are shown to transform temporal cavity solitons into the system’s dominant attractor, leading to reliable self-starting oscillation of microcavity-solitons that are naturally robust to perturbations.

    • Maxwell Rowley
    • , Pierre-Henry Hanzard
    •  & Alessia Pasquazi
  • Article
    | Open Access

    Stochastic cooling at optical frequencies is demonstrated in an experiment at the Fermi National Accelerator Laboratory’s Integrable Optics Test Accelerator, substantially increasing the bandwidth of stochastic cooling compared with conventional systems.

    • J. Jarvis
    • , V. Lebedev
    •  & A. Valishev
  • Article |

    Using a sol–gel passivation method, the fabrication of blue InGaN nanorod-LEDs with the highest external quantum efficiency value ever reported for LEDs in the nanoscale is demonstrated.

    • Mihyang Sheen
    • , Yunhyuk Ko
    •  & Changhee Lee
  • Article |

    Using a three-layer opto-electronic neural network, direct, clock-less sub-nanosecond image classification on a silicon photonics chip is demonstrated, achieving a classification time comparable with a single clock cycle of state-of-the-art digital implementations.

    • Farshid Ashtiani
    • , Alexander J. Geers
    •  & Firooz Aflatouni
  • Article |

    Electrically controlled quantum confinement of excitons to below 10 nm is achieved in a 2D semiconductor by combining in-plane electric fields with interactions between excitons and free charges.

    • Deepankur Thureja
    • , Atac Imamoglu
    •  & Puneet A. Murthy
  • Perspective |

    The control of light–matter interactions as a way to manipulate and synthesize strongly correlated quantum matter is discussed, highlighting a field termed ‘strongly correlated electron–photon science’.

    • Jacqueline Bloch
    • , Andrea Cavalleri
    •  & Angel Rubio
  • Article
    | Open Access

    A quantum network formed by three optically connected nodes comprising solid-state qubits demonstrates the teleportation of quantum information between two non-neighbouring nodes, negating the need for a direct connection between them.

    • S. L. N. Hermans
    • , M. Pompili
    •  & R. Hanson
  • Article |

    Using a compact, particle-beam-driven plasma-based accelerator to accelerate high-quality electron beams that are completely characterized in the six-dimensional phase space, free-electron lasing  is observed with narrow-band amplified radiation in the infrared range.

    • R. Pompili
    • , D. Alesini
    •  & M. Ferrario
  • Article
    | Open Access

    A simple and power-efficient microcomb source is used to drive complementary metal–oxide–semiconductor silicon photonic engines, a step towards the next generation of fully integrated photonic systems.

    • Haowen Shu
    • , Lin Chang
    •  & John E. Bowers
  • Article |

    Light-field control of real and virtual charge carriers in a gold–graphene–gold heterostructure is demonstrated, and used to create a logic gate for application in lightwave electronics.

    • Tobias Boolakee
    • , Christian Heide
    •  & Peter Hommelhoff
  • Article |

    A solid-state single-electron qubit platform is demonstrated based on trapping and manipulating isolated single electrons on an ultraclean solid neon surface in vacuum, which performs near the state of the art for a charge qubit.

    • Xianjing Zhou
    • , Gerwin Koolstra
    •  & Dafei Jin
  • Article |

    Two new plasmon modes are observed in macroscopic twisted bilayer graphene with a highly ordered moiré superlattice, the first being the signature of chiral plasmons and the second a slow plasmonic mode around 0.4 electronvolts.

    • Tianye Huang
    • , Xuecou Tu
    •  & Xiaomu Wang
  • Article
    | Open Access

    Two-junction TPV cells with efficiencies of more than 40% are reported, using an emitter with a temperature between 1,900 and 2,400 °C, for integration into a TPV system for thermal energy grid storage.

    • Alina LaPotin
    • , Kevin L. Schulte
    •  & Asegun Henry
  • Article |

    A material design strategy and fabrication process is described to produce all-polymer light-emitting diodes with high brightness, current efficiency and good mechanical stability, with applications in skin electronics and human–machine interfaces.

    • Zhitao Zhang
    • , Weichen Wang
    •  & Zhenan Bao
  • Article
    | Open Access

    Shear phenomena in the infrared dielectric response of a monoclinic crystal are shown to unveil a new polariton class termed hyperbolic shear polariton that can emerge in any low-symmetry monoclinic or triclinic system.

    • Nikolai C. Passler
    • , Xiang Ni
    •  & Alexander Paarmann
  • Article
    | Open Access

    A hybrid algorithm that applies backpropagation is used to train layers of controllable physical systems to carry out calculations like deep neural networks, but accounting for real-world noise and imperfections.

    • Logan G. Wright
    • , Tatsuhiro Onodera
    •  & Peter L. McMahon
  • Article
    | Open Access

    A triple phase transition, where changing a single parameter simultaneously gives rise to metal–insulator, topological and a parity–time symmetry-breaking phase transitions, is observed in non-Hermitian Floquet quasicrystals.

    • Sebastian Weidemann
    • , Mark Kremer
    •  & Alexander Szameit
  • Article
    | Open Access

    A silicon nitride microresonator is used for coherent phase modulation of a transmission electron microscope beam, with future applications in combining high-resolution microscopy with spectroscopy, holography and metrology.

    • Jan-Wilke Henke
    • , Arslan Sajid Raja
    •  & Tobias J. Kippenberg
  • Article |

    Stable, dissipative optomechanical solitons are realized using optical fields in a whispering gallery mode resonator by balancing the optomechanical nonlinearities with a tailored modal dispersion.

    • Jing Zhang
    • , Bo Peng
    •  & Lan Yang
  • Article |

    A combination of multiview imaging, structured illumination, reconstruction algorithms and deep-learning predictions realizes spatial- and temporal-resolution improvements in fluorescence microscopy to produce super-resolution images from diffraction-limited input images.

    • Yicong Wu
    • , Xiaofei Han
    •  & Hari Shroff
  • Article |

    Engineering of the coupling between optical modes in a lithium niobate chip enables the realization of tunable, bi-directional and low-loss electro-optic frequency shifters controlled using only continuous and single-tone microwaves.

    • Yaowen Hu
    • , Mengjie Yu
    •  & Marko Lončar
  • Article |

    Bloch wavefunctions of two types of hole in gallium arsenide are reconstructed by measuring the polarization of light emitted by collisions of electrons and holes accelerated by a terahertz laser.

    • J. B. Costello
    • , S. D. O’Hara
    •  & M. S. Sherwin
  • Article |

    Experiments using two coupled optical ring resonators and based on the concept of synthetic dimension reveal non-Hermitian energy band structures exhibiting topologically non-trivial knots and links.

    • Kai Wang
    • , Avik Dutt
    •  & Shanhui Fan
  • Review Article |

    This Review discusses the state of the art of interface optics—including refractive optics, meta-optics and moiré engineering—for the control of van der Waals polaritons.

    • Qing Zhang
    • , Guangwei Hu
    •  & Cheng-Wei Qiu
  • Article |

    Gold nanoflake pairs form by self-assembly in an aqueous ligand solution and offer stable and tunable microcavities by virtue of equilibrium between attractive Casimir forces and repulsive electrostatic forces.

    • Battulga Munkhbat
    • , Adriana Canales
    •  & Timur O. Shegai
  • Article |

    High-performance optoelectronic devices that operate in the infrared regime at room temperature exhibit wide-range, active and reversible tunability of the operating wavelengths with black phosphorus.

    • Hyungjin Kim
    • , Shiekh Zia Uddin
    •  & Ali Javey
  • Article |

    Nonlinearity is shown to induce quantized topological transport via soliton motion; specifically, we demonstrate nonlinear Thouless pumping of photons in waveguide arrays with a non-uniformly occupied energy band.

    • Marius Jürgensen
    • , Sebabrata Mukherjee
    •  & Mikael C. Rechtsman
  • Article |

    Direct infrared nano-imaging of plasmonic waves in graphene carrying high current density reveals the Fizeau drag of plasmon polaritons by fast-moving quasi-relativistic electrons.

    • Y. Dong
    • , L. Xiong
    •  & D. N. Basov
  • Article |

    The dynamics of ions within a working lithium-ion battery are examined using optical interferometric scattering microscopy, which allows ion transport to be related to phase transitions and microstructural features.

    • Alice J. Merryweather
    • , Christoph Schnedermann
    •  & Akshay Rao
  • Article |

    A quantum microscope obtains signal-to-noise beyond the photodamage limits of conventional microscopy, revealing biological structures within cells that would not otherwise be resolved.

    • Catxere A. Casacio
    • , Lars S. Madsen
    •  & Warwick P. Bowen
  • Article
    | Open Access

    A nondestructive detector of photonic qubits, comprising a single 87Rb atom trapped in the centre point of two crossed fibre-based optical resonators, is demonstrated.

    • Dominik Niemietz
    • , Pau Farrera
    •  & Gerhard Rempe
  • Article |

    A reinforcement learning experiment using a programmable integrated nanophotonic processor shows that a quantum communication channel with the environment speeds up the learning process of an agent.

    • V. Saggio
    • , B. E. Asenbeck
    •  & P. Walther