Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kerr-induced synchronization of a cavity soliton to an optical reference

Abstract

The phase-coherent frequency division of a stabilized optical reference laser to the microwave domain is made possible by optical-frequency combs (OFCs)1,2. OFC-based clockworks3,4,5,6 lock one comb tooth to a reference laser, which probes a stable atomic transition, usually through an active servo that increases the complexity of the OFC photonic and electronic integration for fieldable clock applications. Here, we demonstrate that the Kerr nonlinearity enables passive, electronics-free synchronization of a microresonator-based dissipative Kerr soliton (DKS) OFC7 to an externally injected reference laser. We present a theoretical model explaining this Kerr-induced synchronization (KIS), which closely matches experimental results based on a chip-integrated, silicon nitride, micro-ring resonator. Once synchronized, the reference laser captures an OFC tooth, so that tuning its frequency provides direct external control of the OFC repetition rate. We also show that the stability of the repetition rate is linked to that of the reference laser through the expected frequency division factor. Finally, KIS of an octave-spanning DKS exhibits enhancement of the opposite dispersive wave, consistent with the theoretical model, and enables improved self-referencing and access to the OFC carrier–envelope offset frequency. The KIS-mediated enhancements we demonstrate can be directly implemented in integrated optical clocks and chip-scale low-noise microwave generators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clockwork concept.
Fig. 2: Phase-locking for KIS.
Fig. 3: Experimental demonstration of synchronization.
Fig. 4: Control of the DKS repetition rate with the reference pump alone.
Fig. 5: Validation of the clockwork under passive synchronization.
Fig. 6: CEO detection improvement: self-balancing and large SHG power.

Similar content being viewed by others

Data availability

The data that supports the plots within this paper and other findings of this study are available from the corresponding authors on request.

Code availability

The simulation code is available from the authors through the pyLLE package available online41, using the inputs and parameters presented in this work.

References

  1. Diddams, S. A., Vahala, K. & Udem, T. Optical frequency combs: coherently uniting the electromagnetic spectrum. Science 369, eaay3676 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Fortier, T. & Baumann, E. 20 years of developments in optical frequency comb technology and applications. Commun. Phys. 2, 153 (2019).

    Article  Google Scholar 

  3. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  CAS  Google Scholar 

  4. Diddams, S. A. et al. An optical clock based on a single trapped 199 Hg+ ion. Science 293, 825–828 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Martin, K. W. et al. Compact optical atomic clock based on a two-photon transition in rubidium. Phys. Rev. Appl. 9, 014019 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of. Metrologia 56, 065004 (2019).

    Article  ADS  CAS  Google Scholar 

  7. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  PubMed  Google Scholar 

  8. Ma, L.-S. et al. Optical frequency dynthesis and comparison with uncertainty at the 10−19 level. Science 303, 1843–1845 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photonics 3, 351–356 (2009).

    Article  ADS  CAS  Google Scholar 

  11. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Tiesinga, E., Mohr, P. J., Newell, D. B. & Taylor, B. N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 93, 025010 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holzwarth, R., Zimmermann, M., Udem, T. & Hansch, T. W. Optical clockworks and the measurement of laser frequencies with a mode-locked frequency comb. IEEE J. Quantum Electron. 37, 1493–1501 (2001).

    Article  ADS  CAS  Google Scholar 

  14. Papp, S. B. et al. Microresonator frequency comb optical clock. Optica 1, 10–14 (2014).

    Article  ADS  CAS  Google Scholar 

  15. Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680 (2019).

    Article  ADS  CAS  Google Scholar 

  16. Drake, T. E. et al. Terahertz-rate Kerr-microresonator optical clockwork. Phys. Rev. X 9, 031023 (2019).

    CAS  Google Scholar 

  17. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Pfeiffer, M. H. P. et al. Octave-spanning dissipative Kerr soliton frequency combs in Si3N4 microresonators. Optica 4, 684–691 (2017).

    Article  ADS  CAS  Google Scholar 

  20. Yu, S.-P. et al. Tuning Kerr-soliton frequency combs to atomic resonances. Phys. Rev. Appl. 11, 044017 (2019).

    Article  ADS  CAS  Google Scholar 

  21. Manurkar, P. et al. Fully self-referenced frequency comb consuming 5 watts of electrical power. OSA Continuum 1, 274–282 (2018).

    Article  CAS  Google Scholar 

  22. Shaw, J. K., Fredrick, C. & Diddams, S. A. Versatile digital approach to laser frequency comb stabilization. OSA Continuum 2, 3262–3271 (2019).

    Article  CAS  Google Scholar 

  23. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Riehle, F. Frequency Standards: Basics and Applications (Wiley-VCH, 2004).

  25. Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Counter-propagating solitons in microresonators. Nat. Photonics 11, 560–564 (2017).

    Article  Google Scholar 

  26. Wang, Y. et al. Universal mechanism for the binding of temporal cavity solitons. Optica 4, 855 (2017).

    Article  ADS  CAS  Google Scholar 

  27. Moille, G. et al. Two-dimensional nonlinear mixing between a dissipative Kerr soliton and continuous waves for a higher-dimension frequency comb. Preprint at https://arxiv.org/abs/2303.10026 (2023).

  28. Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 7275 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qureshi, P. C. et al. Soliton linear-wave scattering in a Kerr microresonator. Commun. Phys. 5, 1–8 (2022).

    Article  Google Scholar 

  30. Zhang, S., Silver, J. M., Bi, T. & Del’Haye, P. Spectral extension and synchronization of microcombs in a single microresonator. Nat. Commun. 11, 6384 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu, Z. et al. Synthesized soliton crystals. Nat. Commun. 12, 3179 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Taheri, H., Matsko, A. B., Maleki, L. & Sacha, K. All-optical dissipative discrete time crystals. Nat. Commun. 13, 848 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Coullet, P., Gilli, J. M., Monticelli, M. & Vandenberghe, N. A damped pendulum forced with a constant torque. Am. J. Phys. 73, 1122–1128 (2005).

    Article  ADS  Google Scholar 

  34. Todd, C. et al. Dynamics of temporal Kerr cavity solitons in the presence of rapid parameter inhomogeneities: from bichromatic driving to third-order dispersion. Phys. Rev. A 107, 013506 (2023).

    Article  ADS  CAS  Google Scholar 

  35. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Englebert, N. et al. Bloch oscillations of coherently driven dissipative solitons in a synthetic dimension. Nat. Phys. 19, 1014–1021 (2023).

    Article  CAS  Google Scholar 

  37. Zhang, S. et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica 6, 206 (2019).

    Article  ADS  CAS  Google Scholar 

  38. Zhou, H. et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Sci. Appl. 8, 50 (2019).

    Article  ADS  PubMed  Google Scholar 

  39. Appleton, E. V. The automatic synchronization of triode Oscillators. Proc. Camb. Phil. Soc. 21, (1922).

  40. Taheri, H., Matsko, A. B. & Maleki, L. Optical lattice trap for Kerr solitons. Eur. Phys. J. D 71, 153 (2017).

    Article  ADS  Google Scholar 

  41. Moille, G., Li, Q., Xiyuan, L. & Srinivasan, K. pyLLE: a fast and user friendly Lugiato–Lefever equation solver. J. Res. Natl Inst. Stand. Technol. 124, 124012 (2019).

    Article  Google Scholar 

  42. Stone, J. R. & Papp, S. B. Harnessing dispersion in soliton microcombs to mitigate thermal noise. Phys. Rev. Lett. 125, 153901 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Voloshin, A. S. et al. Dynamics of soliton self-injection locking in optical microresonators. Nat. Commun. 12, 235 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liehl, A. et al. Broadband analysis and self-control of spectral fluctuations in a passively phase-stable Er-doped fiber frequency comb. Phys. Rev. A 101, 023801 (2020).

    Article  ADS  CAS  Google Scholar 

  46. Friederich, F. et al. Phase-locking of the beat signal of two distributed-feedback diode lasers to oscillators working in the MHz to THz range. Opt. Express 18, 8621–8629 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Chang, L. et al. Strong frequency conversion in heterogeneously integrated GaAs resonators. APL Photonics 4, 036103 (2019).

    Article  ADS  CAS  Google Scholar 

  48. Chen, J.-Y. et al. Efficient frequency doubling with active stabilization on chip. Laser Photonics Rev. 15, 2100091 (2021).

    Article  ADS  Google Scholar 

  49. Lu, J., Li, M., Zou, C.-L., Sayem, A. A. & Tang, H. X. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators. Optica 7, 1654–1659 (2020).

    Article  ADS  Google Scholar 

  50. Lu, X., Moille, G., Rao, A., Westly, D. A. & Srinivasan, K. Efficient photo-induced second harmonic generation in silicon nitride photonics. Nat. Photonics 15, 131–136 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Moille, G. et al. Integrated buried heaters for efficient spectral control of air-clad microresonator frequency combs. APL Photonics 7, 126104 (2022).

    Article  ADS  CAS  Google Scholar 

  52. Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The photonic chips were fabricated by Ligentec SA. We acknowledge partial funding support from the Space Vehicles Directorate of the Air Force Research Laboratory, the Atomic–Photonic Integration programme of the Defense Advanced Research Projects Agency, and the NIST-on-a-chip programme of the National Institute of Standards and Technology. C.M. acknowledges support from the Air Force Office of Scientific Research (Grant No. FA9550-20-1-0357) and the National Science Foundation (Grant No. ECCS-18-07272). We thank P. Shandilya, M. Davanço and V. Aksyuk for insightful feedback. We thank M. Highman and M. Cich from Toptica Photonics for the loan of the fibre comb. Certain commercial products or names are identified to foster understanding. Such identification does not constitute recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the products or names identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

G.M. led the project, designed the resonators, performed the measurements and simulations, and developed the Adler equation model. J.S. helped with the metrology analysis. M.C. developed the electro-optic comb apparatus. R.S. and U.A.J. helped with the second-harmonic characterization. C.M. contributed to the understanding of the physical phenomenon. K.S. helped with guiding the project and with data analysis. G.M. and K.S. wrote the manuscript, with input from all authors. All the authors contributed and discussed the content of this manuscript.

Corresponding authors

Correspondence to Grégory Moille or Kartik Srinivasan.

Ethics declarations

Competing interests

G.M., C.M. and K.S have submitted a provisional patent application based on aspects of the work presented in this paper. 

Peer review

Peer review information

Nature thanks Mengxi Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Complete experimental setup.

EOM: Electro-optical modulator; RSA: real time electrical spectrum analyzer; OSA: optical spectrum analyzer; WDM: wavelength demultiplexer; CTL : continuous tunable laser; MZI: Mach-Zehnder interferometer; APD: avalanche photodiode; PC: polarization controller; YDFA: Ytterbium-doped fiber amplifier; TA: tapered amplifier.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moille, G., Stone, J., Chojnacky, M. et al. Kerr-induced synchronization of a cavity soliton to an optical reference. Nature 624, 267–274 (2023). https://doi.org/10.1038/s41586-023-06730-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06730-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing