Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Remarkable heat conduction mediated by non-equilibrium phonon polaritons

Abstract

Surface waves can lead to intriguing transport phenomena. In particular, surface phonon polaritons (SPhPs), which result from coupling between infrared light and optical phonons, have been predicted to contribute to heat conduction along polar thin films and nanowires1. However, experimental efforts so far suggest only very limited SPhP contributions2,3,4,5. Through systematic measurements of thermal transport along the same 3C-SiC nanowires with and without a gold coating on the end(s) that serves to launch SPhPs, here we show that thermally excited SPhPs can substantially enhance the thermal conductivity of the uncoated portion of these wires. The extracted pre-decay SPhP thermal conductance is more than two orders of magnitude higher than the Landauer limit predicted on the basis of equilibrium Bose–Einstein distributions. We attribute the notable SPhP conductance to the efficient launching of non-equilibrium SPhPs from the gold-coated portion into the uncoated SiC nanowires, which is strongly supported by the observation that the SPhP-mediated thermal conductivity is proportional to the length of the gold coating(s). The reported discoveries open the door for modulating energy transport in solids by introducing SPhPs, which can effectively counteract the classical size effect in many technologically important films and improve the design of solid-state devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SiC nanowire sample and measurement scheme.
Fig. 2: Measured thermal properties of Sample S1.
Fig. 3: The thermal conductance of SPhPs induced by Au coating for Sample S1.
Fig. 4: Correlation between the nanowire structure, SPhP propagation and thermal properties.

Similar content being viewed by others

Data availability

Source data for the main figures are provided with this paper. Source data are provided with this paper.

Code availability

Original MATLAB codes used to solve for the dispersions and attenuations of bulk (Source code 1) and SPhPs (Source code 2) in Extended Data Fig. 1 are provided with this paper.

References

  1. Chen, D., Narayanaswamy, A. & Chen, G. Surface phonon-polariton mediated thermal conductivity enhancement of amorphous thin films. Phys. Rev. B 72, 155435 (2005).

    Article  ADS  Google Scholar 

  2. Tranchant, L. et al. Two-dimensional phonon polariton heat transport. Nano Lett. 19, 6924–6930 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Shin, S., Elzouka, M., Prasher, R. & Chen, R. Far-field coherent thermal emission from polaritonic resonance in individual anisotropic nanoribbons. Nat. Commun. 10, 1377 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. Wu, Y. et al. Enhanced thermal conduction by surface phonon-polaritons. Sci. Adv. 6, eabb4461 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, Y. et al. Observation of heat transport mediated by the propagation distance of surface phonon-polaritons over hundreds of micrometers. Appl. Phys. Lett. 121, 112203 (2022).

    Article  ADS  CAS  Google Scholar 

  6. Ziman, J. M. Electrons and Phonons: The Theory of Transport Phenomena in Solids (Oxford Univ. Press, 2001).

  7. Qian, X., Zhou, J. & Chen, G. Phonon-engineered extreme thermal conductivity materials. Nat. Mater. 20, 1188–1202 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Onose, Y. et al. Observation of the magnon Hall effect. Science 329, 297–299 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chen, X. et al. Synthesis and magnon thermal transport properties of spin ladder Sr14Cu24O41 microstructures. Adv. Funct. Mater. 30, 2001637 (2020).

    Article  CAS  Google Scholar 

  10. Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3. Nat. Mater. 22, 36–41 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Carminati, R. & Greffet, J. Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Mulet, J., Joulain, K. & Carminati, R. Nanoscale radiative heat transfer between a small particle and a plane surface. Appl. Phys. Lett. 78, 2931–2933 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Shen, S., Narayanaswamy, A. & Chen, G. Surface phonon polaritons mediated energy transfer between nanoscale gaps. Nano Lett. 9, 2909–2913 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. St-Gelais, R., Zhu, L., Fan, S. & Lipson, M. Near-field radiative heat transfer between parallel structures in the deep subwavelength regime. Nat. Nanotechnol. 11, 515–519 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Ordonez-Miranda, J. et al. Anomalous thermal conductivity by surface phonon-polaritons of polar nano thin films due to their asymmetric surrounding media. J. Appl. Phys. 113, 084311 (2013).

    Article  ADS  Google Scholar 

  17. Ordonez-Miranda, J. et al. Quantized thermal conductance of nanowires at room temperature due to Zenneck surface-phonon polaritons. Phys. Rev. Lett. 112, 055901 (2014).

    Article  ADS  PubMed  Google Scholar 

  18. Ordonez-Miranda, J. et al. Thermal energy transport in a surface phonon-polariton crystal. Phys. Rev. B 93, 035428 (2016).

    Article  ADS  Google Scholar 

  19. Yun, K. H., Lee, B. J. & Lee, S. H. Modeling effective thermal conductivity enhanced by surface waves using the Boltzmann transport equation. Sci. Rep. 12, 15477 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shi, L. et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J. Heat Transf. 125, 881–888 (2003).

    Article  CAS  Google Scholar 

  21. Wingert, M. C., Chen, Z., Kwon, S., Xiang, J. & Chen, R. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge. Rev. Sci. Instrum. 83, 024901 (2012).

    Article  ADS  PubMed  Google Scholar 

  22. Yang, L. et al. Thermal conductivity of individual silicon nanoribbons. Nanoscale 8, 17895–17901 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, L. et al. Observation of superdiffusive phonon transport in aligned atomic chains. Nat. Nanotechnol. 16, 764–768 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Zhao, Y. et al. Electrical and thermal transport through silver nanowires and their contacts: effects of elastic stiffening. Nano Lett. 20, 7389–7396 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Yang, J. et al. Measurement of the intrinsic thermal conductivity of a multiwalled carbon nanotube and its contact thermal resistance with the substrate. Small 7, 2334–2340 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Dai, S. et al. Efficiency of launching highly confined polaritons by infrared light incident on a hyperbolic material. Nano Lett. 17, 5285–5290 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Novotny, L. & Hecht, B. Principles of Nano-Optics 2nd edn (Cambridge Univ. Press, 2012).

  29. Hu, G., Shen, J., Qiu, C., Alù, A. & Dai, S. Phonon polaritons and hyperbolic response in van der Waals materials. Adv. Opt. Mater. 8, 1901393 (2020).

    Article  CAS  Google Scholar 

  30. Hillenbrand, R., Taubner, T. & Keilmann, F. Phonon-enhanced light–matter interaction at the nanometre scale. Nature 418, 159–162 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photonics 3, 658–661 (2009).

    Article  ADS  CAS  Google Scholar 

  32. Huber, A. J., Deutsch, B., Novotny, L. & Hillenbrand, R. Focusing of surface phonon polaritons. Appl. Phys. Lett. 92, 203104 (2008).

    Article  ADS  Google Scholar 

  33. Low, T. et al. Polaritons in layered two-dimensional materials. Nat. Mater. 16, 182–194 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Greffet, J. J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Eaton, S. W., Fu, A., Wong, A. B., Ning, C. Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).

    Article  ADS  CAS  Google Scholar 

  36. Domoto, G. A., Boehm, R. F. & Tien, C. L. Experimental investigation of radiative transfer between metallic surfaces at cryogenic temperatures. J. Heat Transf. 3, 412–416 (1970).

    Article  Google Scholar 

  37. Thompson, D. et al. Hundred-fold enhancement in far-field radiative heat transfer over the blackbody limit. Nature 561, 216–221 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zhang, Q. et al. Thermal transport in quasi-1D van der Waals crystal Ta2Pd3Se8 nanowires: size and length dependence. ACS Nano 12, 2634–2642 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Teitsworth, T. S. et al. Water splitting with silicon p–i–n superlattices suspended in solution. Nature 614, 270–274 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  41. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  ADS  CAS  Google Scholar 

  43. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  ADS  CAS  Google Scholar 

  44. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  ADS  CAS  Google Scholar 

  46. Li, W., Carrete, J., Katcho, N. A. & Mingo, N. ShengBTE: a solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 185, 1747–1758 (2014).

    Article  ADS  CAS  MATH  Google Scholar 

  47. Serrano, J., Strempfer, J. & Cardona, M. Determination of the phonon dispersion of zinc blende (3C) silicon carbide by inelastic x-ray scattering. Appl. Phys. Lett. 80, 4360–4362 (2002).

    Article  ADS  CAS  Google Scholar 

  48. Widulle, F., Ruf, T., Buresch, O., Debernardi, A. & Cardona, M. Raman study of isotope effects and phonon eigenvectors in SiC. Appl. Phys. Lett. 82, 3089 (1999).

    Article  CAS  Google Scholar 

  49. Fermi, E. Nuclear Physics: A Course Given by Enrico Fermi at the University of Chicago (Univ. Chicago Press, 1950).

  50. Omini, M. & Sparavigna, A. Beyond the isotropic-model approximation in the theory of thermal conductivity. Phys. Rev. B 53, 9064 (1996).

    Article  ADS  CAS  Google Scholar 

  51. Broido, D., Ward, A. & Mingo, N. Lattice thermal conductivity of silicon from empirical interatomic potentials. Phys. Rev. B 72, 014308 (2005).

    Article  ADS  Google Scholar 

  52. Ashley, J. C. & Emerson, L. C. Dispersion relations for non-radiative surface plasmons on cylinders. Surf. Sci. 41, 615–618 (1974).

    Article  ADS  Google Scholar 

  53. Li, Y., Qi, R., Shi, R., Li, N. & Gao, P. Manipulation of surface phonon polaritons in SiC nanorods. Sci. Bull. 65, 820–826 (2020).

    Article  CAS  Google Scholar 

  54. Sun, S., Chen, H., Zheng, W. & Guo, G. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express 21, 14591–14605 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Englman, R. & Ruppin, R. Optical lattice vibrations in finite ionic crystals: III. J. Phys. C Solid State Phys. 1, 1515 (1968).

    Article  ADS  Google Scholar 

  56. Palik, E. D. Handbook of Optical Constants of Solids (Academic, 1998).

  57. Murphy, P. & Moore, J. Coherent phonon scattering effects on thermal transport in thin semiconductor nanowires. Phys. Rev. B 76, 155313 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank A. Majumdar, G. Chen, P. Reddy, G. Walker, J. Valentine, S. Shen, L. Yang and P. Gao for helpful discussions. Z.P. and D.L. thank the financial support from the National Science Foundation (award nos. 1903645 and 2114278). G.L. acknowledges support from the Army Research Office under grants W911NF-21-1-0119 and W911NF-22-P-0029. J.D.C. would like to acknowledge support from the Office of Naval Research under grant N00014-22-1-2035. Density-functional-theory-based calculations (L.L., X.L. and R.J.) were supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Computational resources were provided by the Compute and Data Environment for Science (CADES) at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC05-00OR22725, and by the National Energy Research Scientific Computing Center (NERSC), which is supported by the Office of Science of the U.S. Department of Energy under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

D.L. and Z.P. designed the thermal experiment and analysed the data. Z.P. conducted the thermal measurements and SEM characterizations. G.L. and J.D.C. performed s-SNOM measurements and CST modelling, with assistance from M.L. X.L., R.J. and L.L. performed first-principles calculations on optical phonon scattering and equilibrium thermal conductance. Z.P. and J.R.M. conducted the TEM examination. D.L., J.D.C. and L.L. directed the thermal experiments, optical experiments and theoretical calculations, respectively. D.L. and Z.P. drafted the manuscript, with input from all authors. All authors participated in the writing and discussions.

Corresponding author

Correspondence to Deyu Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Theoretical calculations.

Calculated SiC SPhP dispersions (a,b) and attenuations for different radii and branches (c,d). Note that all higher-order modes (n > 1) overlap with the first-order mode (n = 1) in the upper two panels, showing the SPhP dispersion. The sloped dashed and solid lines indicate the SiC and the free-space light lines in the upper two panels, respectively.

Extended Data Fig. 2 Further experimental data.

a, The overlapping thermal conductivity of an uncoated SiC nanowire measured with two different suspended lengths, indicating negligible contact thermal resistance. b, Extracted SPhP thermal conductivity (brown symbols) and percentage enhancement (blue symbols). Inset shows the sample bridging the two membranes, with the Au-coated segment placed on one membrane. c, An SEM micrograph of the sample after most of the suspended bare SiC nanowire was cut off by a sharp probe. d, Thermal conductance between membranes for the device with the Au-coated segment as shown in c (brown symbols) and a blank device of identical dimension (black symbols).

Supplementary information

Supplementary Information

This file contains further theoretical simulation information, sample preparation details for thermal measurements, uncertainty analysis, thermal data summary, further optical results, Supplementary Figs. 1–22, Supplementary Tables 1 and 2 and Supplementary References.

Peer Review File

Source Code 1

Original MATLAB code used to solve for the dispersions and attenuations of bulk in Extended Data Fig. 1

Source Code 2

Original MATLAB code used to solve for the dispersions and attenuations of SPhPs in Extended Data Fig. 1

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Lu, G., Li, X. et al. Remarkable heat conduction mediated by non-equilibrium phonon polaritons. Nature 623, 307–312 (2023). https://doi.org/10.1038/s41586-023-06598-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06598-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing