Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room temperature operation of germanium–silicon single-photon avalanche diode

Abstract

The ability to detect single photons has led to the advancement of numerous research fields1,2,3,4,5,6,7,8,9,10,11. Although various types of single-photon detector have been developed12, because of two main factors—that is, (1) the need for operating at cryogenic temperature13,14 and (2) the incompatibility with complementary metal–oxide–semiconductor (CMOS) fabrication processes15,16—so far, to our knowledge, only Si-based single-photon avalanche diode (SPAD)17,18 has gained mainstream success and has been used in consumer electronics. With the growing demand to shift the operation wavelength from near-infrared to short-wavelength infrared (SWIR) for better safety and performance19,20,21, an alternative solution is required because Si has negligible optical absorption for wavelengths beyond 1 µm. Here we report a CMOS-compatible, high-performing germanium–silicon SPAD operated at room temperature, featuring a noise-equivalent power improvement over the previous Ge-based SPADs22,23,24,25,26,27,28 by 2–3.5 orders of magnitude. Key parameters such as dark count rate, single-photon detection probability at 1,310 nm, timing jitter, after-pulsing characteristic time and after-pulsing probability are, respectively, measured as 19 kHz µm−2, 12%, 188 ps, ~90 ns and <1%, with a low breakdown voltage of 10.26 V and a small excess bias of 0.75 V. Three-dimensional point-cloud images are captured with direct time-of-flight technique as proof of concept. This work paves the way towards using single-photon-sensitive SWIR sensors, imagers and photonic integrated circuits in everyday life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NEP and operation temperature of the previously reported Ge-based22,23,24,25,26,27,28 and InGaAs-based15,16 SPADs.
Fig. 2: Cross-sectional schematic concept, SEM image and IV characteristics of the demonstrated GeSi SPAD.
Fig. 3: Counting properties of the demonstrated GeSi SPAD.
Fig. 4: Experimental demonstration of 3D scanning and imaging.

Similar content being viewed by others

Data availability

The data supporting this work are available in the main text, figures and Methods. Further information is available from the corresponding author.

Code availability

The codes supporting this work are for extracting the data from the equipment and plotting the data in figures. Further information is available from the corresponding author.

References

  1. Politi, A., Matthews, J. C. F. & O’Brien, J. L. Shor’s quantum factoring algorithm on a photonic chip. Science 325, 1221 (2009).

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  2. Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Waks, E. et al. Quantum cryptography with a photon turnstile. Nature 420, 762 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Lai, S.-K. et al. Satellite-relayed intercontinental quantum network. Phys. Rev. Lett. 120, 030501 (2018).

    Article  ADS  Google Scholar 

  5. Brida, G., Genovese, M. & Ruo Berchera, I. Experimental realization of sub-shot-noise quantum imaging. Nat. Photon. 4, 227–230 (2010).

    Article  CAS  ADS  Google Scholar 

  6. Zarghami, M. et al. A 32 × 32-pixel CMOS imager for quantum optics with per-SPAD TDC, 19.48% fill-factor in a 44.64-μm pitch reaching 1-MHz observation rate. IEEE J. Solid-State Circuits 55, 2819–2830 (2020).

    Article  ADS  Google Scholar 

  7. Bruschini, C., Homulle, H., Antolovic, I. M., Burri, S. & Charbon, E. Single-photon avalanche diode imagers in biophotonics: review and outlook. Light Sci. Appl. 8, 87 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Pawlikowska, A. M., Halimi, A., Lamb, R. A. & Buller, G. S. Single-photon three-dimensional imaging at up to 10 kilometers range. Opt. Express 25, 11919–11931 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Kuzmenko, K. et al. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors. Opt. Express 28, 1330–1344 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Entwistle, M. et al. Geiger-mode APD camera system for single-photon 3D LADAR imaging. In Proc. SPIE Vol. 8375, Advanced Photon Counting Techniques VI, 83750D (SPIE, 2012).

  11. Morimoto, K. et al. Megapixel time-gated SPAD image sensor for 2D and 3D imaging applications. Optica 7, 346–354 (2020).

    Article  ADS  Google Scholar 

  12. Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photon. 3, 696–705 (2009).

    Article  CAS  ADS  Google Scholar 

  13. Marsili, F. et al. Detecting single infrared photons with 93% system efficiency. Nat. Photon. 7, 210–214 (2013).

    Article  CAS  ADS  Google Scholar 

  14. Najafi, F. et al. On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 5873 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Campbell, J. C., Sun, W., Lu, Z., Itzler, M. A. & Jiang, X. Common-mode cancellation in sinusoidal gating with balanced InGaAs/InP single photon avalanche diodes. IEEE J. Quantum Electron. 47, 1505–1511 (2012).

    Article  ADS  Google Scholar 

  16. Signorelli, F. et al. Low-noise InGaAs/InP single-photon avalanche diodes for fiber-based and free-space applications. IEEE J. Sel. Top. Quantum Electron. 28, 3801310 (2022).

    Article  CAS  Google Scholar 

  17. Xu, H., Pancheri, L., Dalla Betta, G.-F. & Stoppa, D. Design and characterization of a p+/n-well SPAD array in 150nm CMOS process. Opt. Express 25, 12765–12778 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Lee, M.-J. et al. High-performance back-illuminated three-dimensional stacked single-photon avalanche diode implemented in 45-nm CMOS technology. IEEE J. Sel. Top. Quant. Electron. 24, 3801809 (2018).

    Article  Google Scholar 

  19. Sliney, D. H. & Freasier, B. C. Evaluation of optical radiation hazards. Appl. Opt. 12, 1–24 (1973).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Bird, R. E., Hulstrom, R. L. & Lewis, L. J. Terrestrial solar spectral data sets. Sol. Energy 30, 563–574 (1983).

    Article  ADS  Google Scholar 

  21. Arnulf, A., Bricardi, J., Cura, E. & Varet, C. Transmission by haze and fog in the spectral region 0.35 to 10 microns. J. Opt. Soc. Am. 47, 491–498 (1957).

    Article  ADS  Google Scholar 

  22. Loudon, A. Y. et al. Enhancement of the infrared detection efficiency of silicon photon-counting avalanche photodiodes by use of silicon germanium absorbing layers. Opt. Lett. 27, 219–221 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Tosi, A., Dalla Mora, A., Zappa, F. & Cova, S. Germanium and InGaAs/InP SPADs for single-Photon detection in the near-infrared. In Proc. SPIE Vol. 6771, Advanced Photon Counting Techniques II, 67710P (SPIE, 2007).

  24. Lu, Z. et al. Geiger-mode operation of Ge-on-Si avalanche photodiodes. IEEE J. Quantum Electron. 47, 731–735 (2011).

    Article  CAS  ADS  Google Scholar 

  25. Warburton, R. E. et al. Ge-on-Si single-photon avalanche diode detectors: design, modeling, fabrication, and characterization at wavelengths 1310 and 1550 nm. IEEE Trans. Electron Devices 60, 3807–3813 (2013).

    Article  CAS  ADS  Google Scholar 

  26. Martinez, N. J. D. et al. Single photon detection in a waveguide-coupled Ge-on-Si lateral avalanche photodiode. Opt. Express 25, 161310–16139 (2017).

    Article  Google Scholar 

  27. Vines, P. et al. High performance planar germanium-on-silicon single-photon avalanche diode detectors. Nat. Commun. 10, 1086 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  28. Ferre Llin, L. et al. High sensitivity Ge-on-Si single-photon avalanche diode detectors. Opt. Lett. 45, 6406–6409 (2020).

    Article  ADS  Google Scholar 

  29. Ke, S. et al. Design of wafer-bonded structures for near room temperature Geiger-mode operation of germanium on silicon single-photon avalanche photodiode. Appl. Opt. 56, 4646–4653 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Soref, R. A., De Leonardis, F. & Passaro, V. M. N. Simulations of nanoscale room temperature waveguide-coupled single-photon avalanche detectors for silicon photonic sensing and quantum applications. ACS Appl. Nano Mater. 2, 7503–7512 (2019).

    Article  CAS  Google Scholar 

  31. Thorburn, F. et al. Ge-on-Si single-photon avalanche diode detectors for short-wave infrared wavelengths. J. Phys. Photonics 4, 012001 (2022).

    Article  ADS  Google Scholar 

  32. Samavedam, S. B., Currie, M. T., Langdo, T. A. & Fitzgerald, E. A. High-quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers. Appl. Phys. Lett. 73, 2125–2127 (1998).

    Article  CAS  ADS  Google Scholar 

  33. Luan, H.-C. et al. High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75, 2909–2911 (1999).

    Article  CAS  ADS  Google Scholar 

  34. Osmond, J. et al. Ultralow dark current Ge/Si(100) photodiodes with low thermal budget. Appl. Phys. Lett. 94, 201106 (2009).

    Article  ADS  Google Scholar 

  35. Åberg, I. et al. A low dark current and high quantum efficiency monolithic germanium-on-silicon CMOS imager technology for day and night imaging applications. In Proc. 2010 International Electron Devices Meeting (IEDM) 14.4.1–14.4.4 (IEEE, 2010).

  36. Lee, K.-H. et al. Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient. APL Mater. 3, 016102 (2015).

    Article  ADS  Google Scholar 

  37. Morse, M., Dosunmu, O., Sarid, G. & Chetrit, Y. Performance of Ge-on-Si p-i-n photodetectors for standard receiver modules. IEEE Photon. Technol. Lett. 18, 2442–2444 (2006).

    Article  CAS  ADS  Google Scholar 

  38. Takenaka, M., Morii, K., Sugiyama, M., Nakano, Y. & Takagi, S. Dark current reduction of Ge photodetector by GeO2 surface passivation and gas-phase doping. Opt. Express 20, 8718–8725 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  39. Sammak, A., Aminian, M., Nanver, L. K. & Charbon, E. CMOS-compatible PureGaB Ge-on-Si APD pixel arrays. IEEE Trans. Electron Devices 63, 92–99 (2016).

    Article  CAS  ADS  Google Scholar 

  40. Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photon. 3, 59–63 (2008).

    Article  ADS  Google Scholar 

  41. Duan, N., Liow, T.-Y., Lim, A. E.-J., Ding, L. & Lo, G. Q. 310 GHz gain-bandwidth product Ge/Si avalanche photodetector for 1550 nm light detection. Opt. Express 20, 11031–11036 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Huang, M. et al. Germanium on silicon avalanche photodiode. IEEE J. Sel. Top. Quantum Electron. 24, 3800911 (2018).

    Article  Google Scholar 

  43. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Virot, L. et al. Germanium avalanche receiver for low power interconnects. Nat. Commun. 5, 4957 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Chen, H. T. et al. High sensitivity 10Gb/s Si photonic receiver based on a low-voltage waveguide-coupled Ge avalanche photodetector. Opt. Express 23, 815–822 (2015).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Su, Y. K., Chang, C. Y. & Wu, T. S. Temperature dependent characteristics of a PIN avalanche photodiode (APD) in Ge, Si and GaAs. Opt. Quantum Electron. 11, 109–117 (1979).

    Article  CAS  ADS  Google Scholar 

  47. Hofbauer, M., Steind, B. & Zimmermann, H. Temperature dependence of dark count rate and after pulsing of a single-photon avalanche diode with an integrated active quenching circuit in 0.35 μm CMOS. J. Sens. 2018, 9585931 (2018).

    Article  Google Scholar 

  48. Mahmoudi, H., Hofbauer, M., Goll, B. & Zimmermann, H. Noise and breakdown characterization of SPAD detectors with time-gated photon-counting operation. Sensors 21, 5287 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  49. Ziarkash, A. W., Joshi, S. K., Stipčević, M. & Ursin, R. Comparative study of afterpulsing behavior and models in single photon counting avalanche photo diode detectors. Sci. Rep. 8, 5076 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  50. Na, N. et al. High-performance germanium-on-silicon lock-in pixels for indirect time-of-flight applications. In Proc. 2018 International Electron Devices Meeting (IEDM) 32.4.1–32.4.4 (2018).

Download references

Acknowledgements

We thank C. H. Shen and D. Y. Lai for the discussion on the fabrication equipment, process and metrology.

Author information

Authors and Affiliations

Authors

Contributions

N.N. conceived the design, supervised the project, and wrote the paper. Y.-C. Lu contributed to device simulation, layout synthesis and wafer-level data analysis. Y.-H.L. contributed to layout synthesis, process integration and wafer-level data analysis. P.-W.C. and Y.-C. Lai contributed to process integration and device fabrication. Y.-R.L. contributed to process integration and wafer-level data analysis. C.-C.L. contributed to wafer-level data collection and analysis. T.S. contributed to die-level data collection and analysis and 3D PCL image capture. C.-H.C. contributed to die-level data collection and analysis. S.-L.C. oversaw the project.

Corresponding author

Correspondence to Neil Na.

Ethics declarations

Competing interests

All authors are shareholders of Artilux Inc., a start-up company that makes SWIR 2D/3D sensors, imagers and photonic integrated circuits.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1

The schematic plot of the electrical and optical setups used in producing data shown in Figs. 3 and 4.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, N., Lu, YC., Liu, YH. et al. Room temperature operation of germanium–silicon single-photon avalanche diode. Nature 627, 295–300 (2024). https://doi.org/10.1038/s41586-024-07076-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07076-x

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing