Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phononic switching of magnetization by the ultrafast Barnett effect

Abstract

The historic Barnett effect describes how an inertial body with otherwise zero net magnetic moment acquires spontaneous magnetization when mechanically spinning1,2. Breakthrough experiments have recently shown that an ultrashort laser pulse destroys the magnetization of an ordered ferromagnet within hundreds of femtoseconds3, with the spins losing angular momentum to circularly polarized optical phonons as part of the ultrafast Einstein–de Haas effect4,5. However, the prospect of using such high-frequency vibrations of the lattice to reciprocally switch magnetization in a nearby magnetic medium has not yet been experimentally explored. Here we show that the spontaneous magnetization gained temporarily by means of the ultrafast Barnett effect, through the resonant excitation of circularly polarized optical phonons in a paramagnetic substrate, can be used to permanently reverse the magnetic state of a heterostructure mounted atop the said substrate. With the handedness of the phonons steering the direction of magnetic switching, the ultrafast Barnett effect offers a selective and potentially universal method for exercising ultrafast non-local control over magnetic order.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of the ultrafast Barnett effect and how it remotely switches magnetization.
Fig. 2: Resonant helicity-dependent switching of magnetization.
Fig. 3: Dependence of switching effects on optical and interlayer parameters.

Similar content being viewed by others

Data availability

All data that support the plots and other findings within this paper are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Barnett, S. J. Magnetization by rotation. Phys. Rev. 6, 239–270 (1915).

    Article  ADS  Google Scholar 

  2. Barnett, S. J. Magnetization and rotation. Am. J. Phys. 16, 140–147 (1948).

    Article  ADS  Google Scholar 

  3. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J. Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Dornes, C. et al. The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Mankowsky, R., Först, M. & Cavalleri, A. Non-equilibrium control of complex solids by nonlinear phononics. Rep. Prog. Phys. 79, 064503 (2016).

    Article  ADS  PubMed  Google Scholar 

  8. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  9. Nova, T. F. et al. An effective magnetic field from optically driven phonons. Nat. Phys. 13, 132–136 (2017).

    Article  CAS  Google Scholar 

  10. Maehrlein, S. F. et al. Dissecting spin-phonon equilibration in ferrimagnetic insulators by ultrafast lattice excitation. Sci. Adv. 4, eaar5164 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    Article  CAS  Google Scholar 

  12. Stupakiewicz, A. et al. Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).

    Article  CAS  Google Scholar 

  13. Afanasiev, D. et al. Ultrafast control of magnetic interactions via light-driven phonons. Nat. Mater. 20, 607–611 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Disa, A. S. et al. Photo-induced high-temperature ferromagnetism in YTiO3. Nature 617, 73–78 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rebane, Y. T. Faraday effect produced in the residual ray region by the magnetic moment of an optical phonon in an ionic crystal. Zh. Eksp. Teor. Fiz. 84, 2323–2328 (1983).

    CAS  Google Scholar 

  16. Sasaki, R., Nii, Y. & Onose, Y. Magnetization control by angular momentum transfer from surface acoustic wave to ferromagnetic spin moments. Nat. Commun. 12, 2599 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Res. 2, 043035 (2020).

    Article  CAS  Google Scholar 

  18. Juraschek, D. M., Neuman, T. & Narang, P. Giant effective magnetic fields from optically driven chiral phonons in 4f paramagnets. Phys. Rev. Res. 4, 013129 (2022).

    Article  CAS  Google Scholar 

  19. Juraschek, D. M. & Spaldin, N. A. Orbital magnetic moments of phonons. Phys. Rev. Mater. 3, 064405 (2019).

    Article  CAS  Google Scholar 

  20. Knippels, G. M. H. et al. Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses. Phys. Rev. Lett. 83, 1578 (1999).

    Article  ADS  CAS  Google Scholar 

  21. Knippels, G. M. H. & van der Meer, A. F. G. FEL diagnostics and user control. Nucl. Instrum. Methods Phys. Res. 144, 32–39 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Barker, A. S. Jr Infrared lattice vibrations and dielectric dispersion in corundum. Phys. Rev. 132, 1474 (1963).

    Article  ADS  CAS  Google Scholar 

  24. Gervais, F. & Piriou, B. Anharmonicity in several-polar-mode crystals: adjusting phonon self-energy of LO and TO modes in Al2O3 and TiO2 to fit infrared reflectivity. J. Phys. C 7, 2374 (1974).

    Article  ADS  CAS  Google Scholar 

  25. Schubert, M., Tiwald, T. E. & Herzinger, C. M. Infrared dielectric anisotropy and phonon modes of sapphire. Phys. Rev. B 61, 8187 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Popova, S., Tolstykh, T. & Vorobev, V. Optical characteristics of amorphous quartz in the 1400–200 cm−1 region. Opt. Spectrosc. 33, 444–445 (1972).

    Google Scholar 

  27. Kress, W., Borik, H. & Wehner, R. K. Infrared lattice absorption of silicon and germanium. Phys. Status Solidi 29, 133 (1968).

    Article  CAS  Google Scholar 

  28. Davies, C. S., Mentink, J. H., Kimel, A. V., Rasing, T. H. & Kirilyuk, A. Helicity-independent all-optical switching of magnetization in ferrimagnetic alloys. J. Magn. Magn. Mater. 563, 169851 (2022).

    Article  CAS  Google Scholar 

  29. Luke, K., Okawachi, Y., Lamont, M. R. E., Gaeta, A. L. & Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Berritta, M., Mondal, R., Carva, K. & Oppeneer, P. M. Ab initio theory of coherent laser-induced magnetization in metals. Phys. Rev. Lett. 117, 137203 (2016).

    Article  ADS  PubMed  Google Scholar 

  33. Quessab, Y. et al. Resolving the role of magnetic circular dichroism in multishot helicity-dependent all-optical switching. Phys. Rev. B 100, 024425 (2019).

    Article  ADS  CAS  Google Scholar 

  34. Bhagavantam, S. & Venkatarayudu, T. Raman effect in relation to crystal structure. Proc. Indian Acad. Sci. A 9, 224–258 (1939).

    Article  Google Scholar 

  35. Cowley, E. R. Symmetry properties of the normal modes of vibration of calcite and α-corundum. Can. J. Phys. 47, 1381–1391 (1969).

    Article  ADS  CAS  Google Scholar 

  36. Onari, S., Arai, T. & Kudo, K. Infrared lattice vibrations and dielectric dispersion in α−Fe2O3. Phys. Rev. B 16, 1717 (1977).

    Article  ADS  CAS  Google Scholar 

  37. Sharma, A. & Singisetti, U. Low field electron transport in α-Ga2O3: an ab initio approach. Appl. Phys. Lett. 118, 032101 (2021).

    Article  ADS  CAS  Google Scholar 

  38. Stokey, M. et al. Infrared dielectric functions and Brillouin zone center phonons of α-Ga2O3 compared to α-Al2O3. Phys. Rev. Mater. 6, 014601 (2022).

    Article  CAS  Google Scholar 

  39. Kirk, C. T. Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. Phys. Rev. B 38, 1255 (1988).

    Article  ADS  CAS  Google Scholar 

  40. Gunde, M. K. Vibrational modes in amorphous silicon dioxide. Phys. B 292, 286–295 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Juraschek, D. M., Fechner, M., Balatsky, A. V. & Spaldin, N. A. Dynamical multiferroicity. Phys. Rev. Mater. 1, 014401 (2017).

    Article  Google Scholar 

  42. Basini, M. et al. Terahertz electric-field driven dynamical multiferroicity in SrTiO3. Nature https://doi.org/10.1038/s41586-024-07175-9 (2024).

  43. Reshef, O., De Leon, I., Alam, M. Z. & Boyd, R. W. Nonlinear optical effects in epsilon-near-zero media. Nat. Rev. Mater. 4, 535–551 (2019).

    Article  CAS  Google Scholar 

  44. Kuroda, N., Tsugawa, K. & Yokoi, H. Negative refraction of infrared waves and rays in sapphire α-Al2O3. J. Phys. Soc. Jpn 81, 114706 (2012).

    Article  ADS  Google Scholar 

  45. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Glybovski, S. B., Tretyakov, S. A., Belova, P. A., Kivshar, Y. S. & Simovski, C. R. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  47. Vezzoli, S. et al. Optical time reversal from time-dependent epsilon-near-zero media. Phys. Rev. Lett. 120, 043902 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Goto, N. et al. Glass-ceramic for magnetic disks and method for manufacturing the same. US patent 5,391,522 (1995).

  49. Le Guyader, L. et al. Nanoscale sub-100 picosecond all-optical magnetization switching in GdFeCo microstructures. Nat. Commun. 6, 5839 (2015).

    Article  ADS  PubMed  Google Scholar 

  50. Born, M. & Wolf, E. Principles of Optics (Pergamon, 1980).

  51. Passler, N. C. & Paarmann, A. Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures. J. Opt. Soc. Am. B 34, 2128–2139 (2017).

    Article  ADS  CAS  Google Scholar 

  52. Querry, M. R. Optical Constants Contractor Report CRDC-CR-85034 (Missouri Univ., 1985).

Download references

Acknowledgements

We thank all technical staff at FELIX for technical support, and T. Janssen for measuring the transmission spectrum of the CdSe waveplate in the infrared spectral range. I.R. is grateful to M. Jeannin and N. Passler for assistance with the 4 × 4 transfer matrix calculations code. We acknowledge the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO-I) for their financial contribution, including the support of the FELIX Laboratory. C.S.D. acknowledges support from the European Research Council ERC Grant Agreement number 101115234 (HandShake). A.V.K. acknowledges support from the European Research Council ERC Grant Agreement number 101054664 (SPARTACUS).

Author information

Authors and Affiliations

Authors

Contributions

C.S.D., A.V.K. and A.K. conceived the project. A.T. fabricated the samples. C.S.D. carried out the experiments together with F.G.N.F., and C.S.D. processed the experimental results. I.R. carried out the transfer-matrix calculations. C.S.D. and A.K. jointly discussed the results and wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to C. S. Davies.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sebastian Maehrlein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Magneto-optical images of wavelength- and helicity-dependent switching in the sapphire-mounted heterostructure.

a–q, Background-subtracted magneto-optical images of the magnetization of GdFeCo, mounted on a sapphire substrate, taken after sweeping circularly polarized macropulses with central wavelength λ as indicated. The pulses, of helicity σ±, are swept from left to right at a speed of 50 µm s−1 across a single-domain background with initial magnetic polarity M or M. Scale bar, 210 µm (common to all images in aq).

Extended Data Fig. 2 Magneto-optical images of wavelength- and helicity-dependent switching in the glass-mounted heterostructure.

a–l, Background-subtracted magneto-optical images of the magnetization of GdFeCo, mounted on a glass-ceramic substrate, taken after sweeping circularly polarized macropulses with central wavelength λ as indicated. The pulses, of helicity σ±, are swept from left to right at a speed of 5 µm s−1 across a single-domain background with initial magnetic polarity M or M. Scale bar, 200 µm (common to all images in al).

Extended Data Fig. 3 Absence of helicity-dependent switching in the silicon-mounted heterostructure.

Spectral dependence of the helicity-dependent switching of magnetization measured in a GdFeCo/Si3N4 heterostructure grown on a silicon substrate, obtained with a sweeping speed of 40 µm s1. Overlaid is the respective absorption spectrum characteristic of the silicon substrate, with the small (≈2×102 cm−1) feature at λ ≈ 16 µm corresponding to an infrared-inactive multi-phonon absorption band27. The net switching efficiency is defined as 0% when the GdFeCo film shows complete demagnetization irrespective of the optical helicity. The error bars correspond to ±1 standard deviation, as explained in the Methods.

Source data

Extended Data Fig. 4 Magneto-optical images of wavelength- and helicity-independent demagnetization in the silicon-mounted heterostructure.

a–n, Background-subtracted magneto-optical images of the magnetization of GdFeCo, mounted on a silicon substrate, taken after sweeping circularly polarized macropulses with central wavelength λ as indicated. The pulses, of helicity σ±, are swept from left to right at a speed of 40 µm s−1 across a single-domain background with initial magnetic polarity M or M. Scale bar, 150 µm (common to all images in an).

Supplementary information

Supplementary Information

Supplementary Notes 1–10, including Supplementary Figs. 1–15, Table 1 and References.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, C.S., Fennema, F.G.N., Tsukamoto, A. et al. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 628, 540–544 (2024). https://doi.org/10.1038/s41586-024-07200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07200-x

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing