Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nozaki–Bekki solitons in semiconductor lasers

This article has been updated

Abstract

Optical frequency-comb sources, which emit perfectly periodic and coherent waveforms of light1, have recently rapidly progressed towards chip-scale integrated solutions. Among them, two classes are particularly significant—semiconductor Fabry–Perót lasers2,3,4,5,6 and passive ring Kerr microresonators7,8,9. Here we merge the two technologies in a ring semiconductor laser10,11 and demonstrate a paradigm for the formation of free-running solitons, called Nozaki–Bekki solitons. These dissipative waveforms emerge in a family of travelling localized dark pulses, known within the complex Ginzburg–Landau equation12,13,14. We show that Nozaki–Bekki solitons are structurally stable in a ring laser and form spontaneously with tuning of the laser bias, eliminating the need for an external optical pump. By combining conclusive experimental findings and a complementary elaborate theoretical model, we reveal the salient characteristics of these solitons and provide guidelines for their generation. Beyond the fundamental soliton circulating inside the ring laser, we demonstrate multisoliton states as well, verifying their localized nature and offering an insight into formation of soliton crystals15. Our results consolidate a monolithic electrically driven platform for direct soliton generation and open the door for a research field at the junction of laser multimode dynamics and Kerr parametric processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Parameter space of the CGLE with corresponding laser regimes.
Fig. 2: Experimental and theoretical characterization of fundamental NB solitons in a monolithic ring laser.
Fig. 3: Multisoliton states.
Fig. 4: Coherent control of NB soliton regimes.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

Information on the code developed to simulate the QCL dynamics and its results are available from the corresponding authors upon reasonable request.

Change history

  • 30 January 2024

    In the version of the article initially published, the name of a peer reviewer, Wenle Weng, was mispelled in the reviewer acknowledgements, and has now been amended in the HTML and PDF versions of the article.

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hugi, A., Villares, G., Blaser, S., Liu, H. C. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Täschler, P. et al. Femtosecond pulses from a mid-infrared quantum cascade laser. Nat. Photon. 15, 919 (2021).

    Article  ADS  Google Scholar 

  4. Hillbrand, J., Andrews, A. M., Detz, H., Strasser, G. & Schwarz, B. Coherent injection locking of quantum cascade laser frequency combs. Nat. Photon. 13, 101 (2019).

    Article  ADS  CAS  Google Scholar 

  5. Villares, G. et al. On-chip dual-comb based on quantum cascade laser frequency combs. Appl. Phys. Lett. 107, 251104 (2015).

  6. Opačak, N. & Schwarz, B. Theory of frequency-modulated combs in lasers with spatial hole burning, dispersion, and Kerr nonlinearity. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.123.243902 (2019).

  7. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145 (2013).

    Article  ADS  Google Scholar 

  8. Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nat. Phys. 13, 94 (2016).

    Article  Google Scholar 

  9. Xue, X. et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat. Photon. 9, 594 (2015).

    Article  ADS  CAS  Google Scholar 

  10. Piccardo, M. et al. Frequency combs induced by phase turbulence. Nature 582, 360 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Meng, B. et al. Mid-infrared frequency comb from a ring quantum cascade laser. Optica 7, 162 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Aranson, I. S. & Kramer, L. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  13. Bekki, N. & Nozaki, K. Formations of spatial patterns and holes in the generalized Ginzburg–Landau equation. Phys. Lett. A 110, 133 (1985).

    Article  ADS  Google Scholar 

  14. Lega, J. Traveling hole solutions of the complex Ginzburg–Landau equation: a review. Physica D 152–153, 269 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  15. Karpov, M. et al. Dynamics of soliton crystals in optical microresonators. Nat. Phys. 15, 1071 (2019).

    Article  CAS  Google Scholar 

  16. Akhmediev, N. & Ankiewicz, A. (eds) Dissipative Solitons: From Optics to Biology and Medicine (Springer, 2008).

  17. Grelu, P. & Akhmediev, N. Dissipative solitons for mode-locked lasers. Nat. Photon. 6, 84 (2012).

    Article  ADS  CAS  Google Scholar 

  18. Englebert, N., Arabí, C. M., Parra-Rivas, P., Gorza, S.-P. & Leo, F. Temporal solitons in a coherently driven active resonator. Nat. Photon. 15, 536 (2021).

    Article  ADS  CAS  Google Scholar 

  19. Leo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nat. Photon. 4, 471 (2010).

    Article  ADS  CAS  Google Scholar 

  20. Rowley, M. et al. Self-emergence of robust solitons in a microcavity. Nature 608, 303 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, S .et al. Dark-bright soliton bound states in a microresonator. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.128.033901 (2022).

  22. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274 (2017).

  23. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Yao, Y., Hoffman, A. J. & Gmachl, C. F. Mid-infrared quantum cascade lasers. Nat. Photon. 6, 432 (2012).

    Article  ADS  CAS  Google Scholar 

  27. Williams, B. S. Terahertz quantum-cascade lasers. Nat. Photon. 1, 517 (2007).

    Article  ADS  CAS  Google Scholar 

  28. Opačak, N., Cin, S. D., Hillbrand, J. & Schwarz, B. Frequency comb generation by Bloch gain induced giant Kerr nonlinearity. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.127.093902 (2021).

  29. Friedli, P. et al. Four-wave mixing in a quantum cascade laser amplifier. Appl. Phys. Lett. 102, 222104 (2013).

    Article  ADS  Google Scholar 

  30. Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158 (2019).

    Article  ADS  CAS  Google Scholar 

  31. Jaidl, M. et al. Comb operation in terahertz quantum cascade ring lasers. Optica 8, 780 (2021).

    Article  ADS  Google Scholar 

  32. Paolo Micheletti et al. Terahertz optical solitons from dispersion-compensated antenna-coupled planarized ring quantum cascade lasers. Sci. Adv. 9, eadf9426 (2023).

  33. Meng, B. et al. Dissipative Kerr solitons in semiconductor ring lasers. Nat. Photon. 16, 142 (2021).

    Article  ADS  Google Scholar 

  34. Columbo, L. et al. Unifying frequency combs in active and passive cavities: temporal solitons in externally driven ring lasers. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.126.173903 (2021).

  35. Prati, F. et al. Soliton dynamics of ring quantum cascade lasers with injected signal. Nanophotonics 10, 195 (2020).

    Article  Google Scholar 

  36. Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259 (1982).

    Article  ADS  Google Scholar 

  37. Opačak, N. et al. Spectrally resolved linewidth enhancement factor of a semiconductor frequency comb. Optica 8, 1227 (2021).

    Article  ADS  Google Scholar 

  38. Efremidis, N., Hizanidis, K., Nistazakis, H. E., Frantzeskakis, D. J. & Malomed, B. A. Stabilization of dark solitons in the cubic Ginzburg–Landau equation. Phys. Rev. E 62, 7410 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Perraud, J.-J. et al. One-dimensional “spirals”: novel asynchronous chemical wave sources. Phys. Rev. Lett. 71, 1272 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Burguete, J., Chaté, H., Daviaud, F. & Mukolobwiez, N. Bekki–Nozaki amplitude holes in hydrothermal nonlinear waves. Phys. Rev. Lett. 82, 3252 (1999).

    Article  ADS  CAS  Google Scholar 

  41. Slepneva, S. et al. Convective Nozaki–Bekki holes in a long cavity OCT laser. Opt. Express 27, 16395 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Gowda, U. et al. Turbulent coherent structures in a long cavity semiconductor laser near the lasing threshold. Opt. Lett. 45, 4903 (2020).

    Article  ADS  PubMed  Google Scholar 

  43. Popp, S., Stiller, O., Aranson, I., Weber, A. & Kramer, L. Localized hole solutions and spatiotemporal chaos in the 1D complex Ginzburg–Landau equation. Phys. Rev. Lett. 70, 3880 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Popp, S., Stiller, O., Aranson, I. & Kramer, L. Hole solutions in the 1D complex Ginzburg–Landau equation. Physica D 84, 398 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  45. Kazakov, D. et al. Active mid-infrared ring resonators. Nat. Commun. https://doi.org/10.1038/s41467-023-44628-7 (2024).

  46. Burghoff, D. et al. Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. Opt. Express 23, 1190 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Observation of dispersive wave emission by temporal cavity solitons. Opt. Lett. 39, 5503 (2014).

    Article  ADS  PubMed  Google Scholar 

  48. Anderson, M. H. et al. Zero dispersion Kerr solitons in optical microresonators. Nat. Commun. https://doi.org/10.1038/s41467-022-31916-x (2022).

  49. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600 (2017).

    Article  CAS  Google Scholar 

  50. Liu, D., Zhang, L., Tan, Y. & Dai, D. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J. Lightw. Technol. 39, 5910 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Mansuripur, T. S. et al. Single-mode instability in standing-wave lasers: the quantum cascade laser as a self-pumped parametric oscillator. Phys. Rev. https://doi.org/10.1103/physreva.94.063807 (2016).

  52. White, A. D. et al. Integrated passive nonlinear optical isolators. Nat. Photon. 17, 143–149 (2022).

    Article  ADS  Google Scholar 

  53. Xiang, C. et al. 3D integration enables ultralow-noise isolator-free lasers in silicon photonics. Nature 620, 78–85 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. https://doi.org/10.1038/ncomms6192 (2014).

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation programme (grant agreement number 853014) and from the National Science Foundation under grant number ECCS-2221715. T.P.L. thanks the support of the Department of Defense (DoD) through the National Defense Science and Engineering Graduate (NDSEG) Fellowship Program.

Author information

Authors and Affiliations

Authors

Contributions

N.O., D.K., F. Pilat, T.P.L. and B.S. carried out the experiments and analysed the data. M.B. fabricated the device. N.O. performed the master-equation simulations. L.L.C., M.B. and F. Prati did the CGLE simulations and contributed to the analysis of the experimental results and their interpretation in the framework of the CGLE theory. N.O. prepared the paper with input from all co-authors. N.O., T.P.L., D.K. and F. Pilat wrote sections of the Supplementary Information. B.S., M.P. and F.C. supervised the project. All authors contributed to the discussion of the results.

Corresponding authors

Correspondence to Nikola Opačak or Benedikt Schwarz.

Ethics declarations

Competing interests

The authors declare no competing interests

Peer review

Peer review information

Nature thanks Wenle Weng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Experimental evidence suggesting an NB soliton crystal.

Intensity spectrum of a probable fifth harmonic frequency comb, where the intermode spacing equals 5 FSRs. The soliton crystal regime is suggested by the smooth bell-shaped envelope of the spectrum. In the Fig. 3 of the main manuscript, we have shown an experimental and theoretical characterization of a multisoliton state comprised of two co-propagating NB solitons in a single roundtrip. A special case of multisolitonic states, where all of the solitons within one roundtrip are equidistant, is called a soliton crystal15. In the frequency domain, these waveforms correspond to a harmonic frequency comb whose spacing between adjacent comb modes is equal to an integer multiple of the FSR: N × FSR, where N is the number of solitons in the soliton crystal. The coherence of the state is suggested by the high suppression ratio of the fundamental modes that fall beneath the noise floor, leaving only the harmonic equidistant modes. Furthermore, the modes form a smooth bell-shaped spectral envelope that indicates the soliton nature of the state. The high frequency of the intermode beatnote (around 68 GHz) lies well above the cutoff frequency of our optical detector, thus prohibiting SWIFTS characterization to truly assess the coherence of the state. This begs for the future use of another coherent technique to study soliton crystal dynamics in active ring resonators.

Extended Data Fig. 2 Shifting of the soliton spectral envelope relative to the primary mode.

Experimental characterization of two NB solitons where the tuning of the bias current results in a shift of the spectral soliton envelope from the red to the blue side of the primary mode (a and b respectively). The shift of the soliton spectral envelope happens as the currents of the ring and the waveguide are changed. The main reason for this likely lies in the large change of the total GVD, as discussed in the main manuscript, and recently observed experimentally in passive microresonators21. Although the soliton envelope may be positioned differently relative to the primary mode, the expected two π jumps of the intermode phases around the primary mode are still present – indicating that this is indeed a salient feature of NB solitons. The temporal profile of the phase exhibits the familiar 2π ramp within the width of the soliton. We can observe that the direction of the ramp depends on whether the soliton spectral envelope is on the red or on the blue side relative to the primary mode. In a hypothetical state where the soliton envelope would be perfectly symmetric relative to the primary mode (if the soliton spectral center of mass coincides with the position of the primary mode), the 2π phase ramp would comprise two separate π ramps with an opposite direction. However, this state does not represent a stable fixed point, and is likely never to occur experimentally.

Extended Data Fig. 3 Laser operation under delayed optical feedback.

a, Fabry-Perot QCL spectrogram of the intermode beat note under delayed feedback induced by placing a mirror at the laser output. The feedback intensity is varied by rotating a polarizer placed between the laser facet and the mirror. The frequency axis of the spectrogram is centered at 5.833 GHz. b, Same measurement as in a, performed on a ring QCL generating a unidirectional Nozaki-Bekki soliton. The frequency axis of the spectrogram is centered at 18.623 GHz. In both measurements resolution bandwidth of the RF spectrum analyzer is 16 kHz.

Supplementary information

Supplementary Information

This file contains Supplementary Information, including Supplementary Figs. 1–8, Table 1 and additional references.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Opačak, N., Kazakov, D., Columbo, L.L. et al. Nozaki–Bekki solitons in semiconductor lasers. Nature 625, 685–690 (2024). https://doi.org/10.1038/s41586-023-06915-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06915-7

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing