Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconfigurable moiré nanolaser arrays with phase synchronization

Abstract

Miniaturized lasers play a central role in the infrastructure of modern information society. The breakthrough in laser miniaturization beyond the wavelength scale has opened up new opportunities for a wide range of applications1,2,3,4, as well as for investigating light–matter interactions in extreme-optical-field localization and lasing-mode engineering5,6,7,8,9,10,11,12,13,14,15,16,17,18,19. An ultimate objective of microscale laser research is to develop reconfigurable coherent nanolaser arrays that can simultaneously enhance information capacity and functionality. However, the absence of a suitable physical mechanism for reconfiguring nanolaser cavities hinders the demonstration of nanolasers in either a single cavity or a fixed array. Here we propose and demonstrate moiré nanolaser arrays based on optical flatbands in twisted photonic graphene lattices, in which coherent nanolasing is realized from a single nanocavity to reconfigurable arrays of nanocavities. We observe synchronized nanolaser arrays exhibiting high spatial and spectral coherence, across a range of distinct patterns, including P, K and U shapes and the Chinese characters ‘中’ and ‘国’ (‘China’ in Chinese). Moreover, we obtain nanolaser arrays that emit with spatially varying relative phases, allowing us to manipulate emission directions. Our work lays the foundation for the development of reconfigurable active devices that have potential applications in communication, LiDAR (light detection and ranging), optical computing and imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reconfigurable moiré nanolaser array with phase locking.
Fig. 2: U-shaped moiré nanolaser array with phase locking.
Fig. 3: Coherent P-shaped and K-shaped moiré nanolaser arrays.
Fig. 4: Phase-dependent superposition for beam steering.
Fig. 5: Coherent reconfigurable moiré nanolaser arrays in the Chinese characters ‘中’ and ‘国’ (‘China’ in Chinese).

Similar content being viewed by others

Data availability

We declare that the data supporting the findings of this study are available in the paper.

References

  1. Berini, P. & De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nat. Photon. 6, 16–24 (2012).

    Article  ADS  CAS  Google Scholar 

  2. Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photon. 8, 908–918 (2014).

    Article  ADS  CAS  Google Scholar 

  3. Eaton, S. W., Fu, A., Wong, A. B., Ning, C. Z. & Yang, P. Semiconductor nanowire lasers. Nat. Rev. Mater. 1, 16028 (2016).

    Article  ADS  CAS  Google Scholar 

  4. Ma, R.-M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  PubMed  Google Scholar 

  6. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams. Nat. Mater. 18, 121–128 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Carlon Zambon, N. et al. Optically controlling the emission chirality of microlasers. Nat. Photon. 13, 283–288 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection. Nat. Nanotechnol. 15, 67–72 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Yang, Z. Q., Shao, Z. K., Chen, H. Z., Mao, X. R. & Ma, R. M. Spin-momentum-locked edge mode for topological vortex lasing. Phys. Rev. Lett. 125, 013903 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Dikopoltsev, A. et al. Topological insulator vertical-cavity laser array. Science 373, 1514–1517 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities. Nature 608, 692–698 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yang, L. et al. Topological-cavity surface-emitting laser. Nat. Photon. 16, 279–283 (2022).

    Article  ADS  CAS  Google Scholar 

  17. Schumer, A. et al. Topological modes in a laser cavity through exceptional state transfer. Science 375, 884–888 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Sang, Y. G. et al. Topological polarization singular lasing with highly efficient radiation channel. Nat. Commun. 13, 6485 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen, Y. et al. Compact spin-valley-locked perovskite emission. Nat. Mater. 22, 1065–1070 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  26. Huang, D., Choi, J., Shih, C.-K. & Li, X. Excitons in semiconductor moiré superlattices. Nat. Nanotechnol. 17, 227–238 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  28. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Wang, P. et al. Localization and delocalization of light in photonic moiré lattices. Nature 577, 42–46 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Mao, X. R., Shao, Z. K., Luan, H. Y., Wang, S. L. & Ma, R. M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 16, 1099–1105 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Dong, K. et al. Flat bands in magic-angle bilayer photonic crystals at small twists. Phys. Rev. Lett. 126, 223601 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Ma, R. M. et al. Twisted lattice nanocavity with theoretical quality factor exceeding 200 billion. Fundam. Res. 3, 537–543 (2023).

    Article  Google Scholar 

  33. Wang, H., Ma, S., Zhang, S. & Lei, D. Intrinsic superflat bands in general twisted bilayer systems. Light Sci. Appl. 11, 159 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meng, Z. et al. Atomic Bose–Einstein condensate in twisted-bilayer optical lattices. Nature 615, 231–236 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Du, L. et al. Moiré photonics and optoelectronics. Science 379, eadg0014 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Guan, J. et al. Far-field coupling between moiré photonic lattices. Nat. Nanotechnol. 18, 514–520 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Tang, H. et al. Experimental probe of twist angle–dependent band structure of on-chip optical bilayer photonic crystal. Sci. Adv. 9, eadh8498 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zheng, Z. et al. Phonon polaritons in twisted double-layers of hyperbolic van der Waals crystals. Nano Lett. 20, 5301–5308 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Duan, J. et al. Twisted nano-optics: manipulating light at the nanoscale with twisted phonon polaritonic slabs. Nano Lett. 20, 5323–5329 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Chen, M. et al. Configurable phonon polaritons in twisted α-MoO3. Nat. Mater. 19, 1307–1311 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Chen, C. et al. Emergence of interfacial polarons from electron–phonon coupling in graphene/h-BN van der Waals heterostructures. Nano Lett. 18, 1082–1087 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Sutherland, B. Localization of electronic wave functions due to local topology. Phys. Rev. B 34, 5208–5211 (1986).

    Article  ADS  CAS  Google Scholar 

  43. Arai, M., Tokihiro, T., Fujiwara, T. & Kohmoto, M. Strictly localized states on a two-dimensional Penrose lattice. Phys. Rev. B 38, 1621–1626 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. Guzmán-Silva, D. et al. Experimental observation of bulk and edge transport in photonic Lieb lattices. New J. Phys. 16, 063061 (2014).

    Article  ADS  Google Scholar 

  45. Mukherjee, S. et al. Observation of a localized flat-band state in a photonic Lieb lattice. Phys. Rev. Lett. 114, 245504 (2015).

    Article  ADS  PubMed  Google Scholar 

  46. Vicencio, R. A. et al. Observation of localized states in Lieb photonic lattices. Phys. Rev. Lett. 114, 245503 (2015).

    Article  ADS  PubMed  Google Scholar 

  47. Xia, S. et al. Unconventional flatband line states in photonic Lieb lattices. Phys. Rev. Lett. 121, 263902 (2018).

    Article  ADS  PubMed  Google Scholar 

  48. Tang, L. et al. Photonic flat-band lattices and unconventional light localization. Nanophotonics 9, 1161–1176 (2020).

    Article  Google Scholar 

  49. Tsakmakidis, K. L., Pickering, T. W., Hamm, J. M., Page, A. F. & Hess, O. Completely stopped and dispersionless light in plasmonic waveguides. Phys. Rev. Lett. 112, 167401 (2014).

    Article  ADS  PubMed  Google Scholar 

  50. Tsakmakidis, K. L., Hess, O., Boyd, R. W. & Zhang, X. Ultraslow waves on the nanoscale. Science 358, eaan5196 (2017).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China (grant nos. 2018YFA0704401 and 2022YFA1404700), the National Natural Science Foundation of China (grant nos. 12225402, 91950115, 11774014 and 62321004), the Beijing Natural Science Foundation (Z180011) and the New Cornerstone Science Foundation through the XPLORER PRIZE. The authors thank Peking Nanofab and the National Center for Nanoscience and Technology for fabrication assistance.

Author information

Authors and Affiliations

Authors

Contributions

R.-M.M. conceived the concept and supervised the project. H.-Y.L., Y.-H.O. and W.-Z.M. carried out numerical simulations and performed optical characterization. Z.-W.Z. and W.-Z.M. fabricated the devices. R.-M.M., H.-Y.L. and Y.-H.O. performed the data analysis. R.-M.M. wrote the manuscript.

Corresponding author

Correspondence to Ren-Min Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Fabrication procedure of the reconfigurable moiré nanolaser array.

The semiconductor membrane for moiré superlattice fabrication consists of InGaAsP MQWs with a thickness of 200 nm. The fabrication procedure includes four essential steps. Step 1: transferring pattern to resist by electron-beam lithography. Step 2: dry etching SiO2 by means of ICP, in which resist is used as mask. Step 3: dry etching MQWs through ICP, in which patterned SiO2 is used as mask. Step 4: removing SiO2 mask and InP substrate using wet-etching methods.

Extended Data Fig. 2 Nanolasing in a single unit cell of the moiré superlattice.

a, SEM image of the device. The orange hexagon highlights the single unit cell of the moiré superlattice for nanolasing. b, Light–light curve (green) and linewidth evolution curve (blue) of the single-cavity nanolaser. Circles, data; lines: guides to the eye. c, Normalized emission spectra near lasing threshold (Pth), which shows the linewidth narrowing of the lasing mode. Circles, data; lines, fitting. d,e, Spontaneous emission patterns of the device in real (d) and momentum (e) spaces. f,g, Lasing emission patterns in real (f) and momentum (g) spaces. h,i, Simulated emission patterns in real (h) and momentum (i) spaces. The lasing flatband mode exhibits a narrower bandwidth along the Γ–M (horizontal) direction compared with that along the Γ–K (vertical) direction (Extended Data Fig. 9), resulting in a more localized mode along the Γ–M direction (h). Consequently, this leads to a broader momentum distribution (i) according to Fourier transform. j, Polarization-resolved lasing emission spectra. The spectrum counts at 0° polarization are magnified by a factor of 20. k, Normalized lasing emission intensity as a function of the polarization angle. l, Intensity profiles along the dashed lines in g and i. Scale bars, 1.6 μm−1 (e,g,i).

Extended Data Fig. 3 Linewidth narrowing and photon emission statistics transition of the U-shaped moiré nanolaser array.

a, Linewidth evolution curve of the U-shaped moiré nanolaser array. Pth, lasing threshold; circles, data; line, guide to the eye. b, Normalized emission spectra near the lasing threshold (Pth), which shows the linewidth narrowing of the lasing mode. Circles, data; lines, fitting. c,d, Second-order intensity correlation function g(2)(τ) of the nanolaser array at 1.19Pth (c) and 2.24Pth (d). Near the lasing threshold (c), the emitted photons exhibit super-Poissonian light characteristics (g(2)(τ = 0) > 1). Above the lasing threshold (d), the photon emission statistics transition from super-Poissonian to Poissonian, indicating the emergence of coherent light emission (g(2)(τ = 0) = 1).

Extended Data Fig. 4 Phase distribution of the U-shaped moiré nanolaser obtained by three-dimensional full-wave simulation.

a, Hz field pattern of the U-shaped moiré nanolaser array. b, Time-resolved Hz field at the seven unit cells marked in a, indicating that all of them oscillate in phase. t, time; T, oscillation period.

Extended Data Fig. 5 Uniform emission polarization among all constituent nanolasers in the U-shaped nanolaser array.

a, Polarization-resolved lasing pattern of the U-shaped nanolaser array with a polarizer filter oriented at 90°. b, Polarization-resolved lasing pattern of the U-shaped nanolaser array with a polarizer filter oriented at 0°.

Extended Data Fig. 6 The relationship between patterns in real space, patterns in momentum space and the presence of flatband modes.

a, Simulated pattern of U-shaped nanolaser array observed in real space. b, Simulated pattern of U-shaped nanolaser array observed in momentum space. The patterns in a and b can be mutually transformed through Fourier transform. c, Band diagram superimposed with the momentum-space pattern depicted in b, which shows the eigenfrequency distribution of the lasing mode of the U-shaped nanolaser array determined by the dispersion relation.

Extended Data Fig. 7 U-shaped nanolaser array emitting without phase locking.

a,b, Lasing emission patterns of U-shaped nanolaser array emitting without phase locking in real (a) and momentum (b) space. Despite the U shape being well maintained in real space, the emission exhibits strong divergence in momentum space resulting from the lack of phase locking. Scale bar, 1.6 μm−1 (b). c, Corresponding lasing spectrum of the U-shaped nanolaser array emitting without phase locking.

Extended Data Fig. 8 Simulated patterns of the fundamental, first higher, second higher and third higher modes.

ad, Simulated real-space patterns of the fundamental (a), first higher (b), second higher (c) and third higher (d) modes. eh, Simulated momentum-space patterns of the fundamental (e), first higher (f), second higher (g) and third higher (h) modes. il, Hz field phase distributions of the fundamental (i), first higher (j), second higher (k) and third higher (l) modes. Insets in il, enlarged phase distributions in marked areas. In the fundamental mode, all constituent local nanocavities exhibit synchronized in-phase oscillation. In the higher-order modes, there exists a phase difference of π between any two adjacent regions separated by a node (intensity zero crossing). Scale bars, 1.6 μm−1 (eh).

Extended Data Fig. 9 Three-dimensional full-wave-simulated band structure of the moiré nanolaser array.

The red and blue bands represent two dipole flatbands. The colour bar represents the corresponding weight of a flatband mode in two polarizations, namely, px and py.

Extended Data Fig. 10 Scalability of the moiré nanolaser array.

a,b, Real (a) and momentum (b) spaces lasing patterns of the large-scale moiré nanolaser array on SiO2 substrate. Scale bar, 1.6 μm−1 (b). c, Intensity profile along the dashed line in b. d, Spectrum of the entire moiré nanolaser array (top spectrum) and spatially resolved spectra from four individual unit cells marked in a.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–10 and Supplementary Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luan, HY., Ouyang, YH., Zhao, ZW. et al. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023). https://doi.org/10.1038/s41586-023-06789-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06789-9

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing