Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

All-optical frequency division on-chip using a single laser

Abstract

The generation of spectrally pure microwave signals is a critical functionality in fundamental and applied sciences, including metrology and communications. Optical frequency combs enable the powerful technique of optical frequency division (OFD) to produce microwave oscillations of the highest quality1,2. Current implementations of OFD require multiple lasers, with space- and energy-consuming optical stabilization and electronic feedback components, resulting in device footprints incompatible with integration into a compact and robust photonic platform3,4,5. Here we demonstrate all-optical OFD on a photonic chip by synchronizing two distinct dynamical states of Kerr microresonators pumped by a single continuous-wave laser. The inherent stability of the terahertz beat frequency between the signal and idler fields of an optical parametric oscillator is transferred to a microwave frequency of a Kerr soliton comb, and synchronization is achieved via a coupling waveguide without the need for electronic locking. OFD factors of N = 34 and 468 are achieved for 227 GHz and 16 GHz soliton combs, respectively. In particular, OFD enables a 46 dB phase-noise reduction for the 16 GHz soliton comb, resulting in the lowest microwave noise observed in an integrated photonics platform. Our work represents a simple, effective approach for performing OFD and provides a pathway towards chip-scale devices that can generate microwave frequencies comparable to the purest tones produced in metrological laboratories.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of on-chip low-noise microwave generation via frequency division.
Fig. 2: Numerical simulation of OPO noise and OPO–soliton synchronization.
Fig. 3: Experimental demonstration of OPO–soliton synchronization.
Fig. 4: Electronically detectable microwave generation.

Similar content being viewed by others

Data availability

All data used in this paper is available in the Zenodo repository at https://zenodo.org/records/10652056.

Code availability

The code used to plot the data is available in the Zenodo repository. Simulation code may be obtained from the authors upon reasonable request.

References

  1. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  CAS  ADS  Google Scholar 

  2. Bothwell, T. et al. JILA SrI optical lattice clock with uncertainty of 2.0 × 10−18. Metrologia 56, 065004 (2019).

    Article  CAS  ADS  Google Scholar 

  3. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article  CAS  ADS  Google Scholar 

  4. Li, J., Yi, X., Lee, H., Diddams, S. A. & Vahala, K. J. Electro-optical frequency division and stable microwave synthesis. Science 345, 309–313 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Tetsumoto, T. et al. Optically referenced 300 GHz millimetre-wave oscillator. Nat. Photon. 15, 516–522 (2021).

    Article  CAS  ADS  Google Scholar 

  6. Ivanov, E. N., Tobar, M. E. & Woode, R. A. Ultra-low-noise microwave oscillator with advanced phase noise suppression system. IEEE Microw. Guided W. 6, 312–314 (1996).

    Article  Google Scholar 

  7. Kinget, P. in Analog Circuit Design (eds Sansen, W., Juijsign, J. & van de Plassche, R.) 353–381 (Springer, 1999).

  8. Razavi, B. Design of millimeter-wave CMOS radios: a tutorial. IEEE Trans. Circuits Syst. 56, 4–16 (2009).

    Article  MathSciNet  Google Scholar 

  9. Rappaport, T. S., Murdock, J. N. & Gutierrez, F. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE 99, 1390–1436 (2011).

    Article  Google Scholar 

  10. van Beek, J. T. M. & Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng. 22, 013001 (2011).

    Article  Google Scholar 

  11. Madjar, A. & Berceli, T. Microwave generation by optical techniques - a review. In Proc. Eur. Microw. Conf. (eds. Brazil, T. & Walker, J.) 1099–1102 (Horizon House Publications Ltd, 2006).

  12. Maleki, L. The optoelectronic oscillator. Nat. Photon. 5, 728–730 (2011).

    Article  CAS  ADS  Google Scholar 

  13. Pikovsky, A., Rosenblum, M. & Kurths, J. Synchronization - A Universal Concept in Nonlinear Sciences, Vol. 12 (Cambridge Univ. Press, 2001).

  14. Jang, J. K. et al. Observation of Arnold tongues in coupled soliton Kerr frequency combs. Phys. Rev. Lett. 123, 153901 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Rodrigues, C. C. et al. Optomechanical synchronization across multi-octave frequency spans. Nat. Commun. 12, 5625 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Weng, W., Kaszubowska-Anandarajah, A., Liu, J., Anandarajah, P. M. & Kippenberg, T. J. Frequency division using a soliton-injected semiconductor gain-switched frequency comb. Sci. Adv. 6, eaba2807 (2020).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Matsko, A. B. & Maleki, L. Noise conversion in Kerr comb RF photonic oscillators. J. Opt. Soc. Am. B 32, 232–240 (2015).

    Article  CAS  ADS  Google Scholar 

  18. Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 3 (2017).

    Article  ADS  Google Scholar 

  19. Bao, C. et al. Soliton repetition rate in a silicon-nitride microresonator. Opt. Lett. 42, 759–762 (2017).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Yang, Qi-Fan et al. Dispersive-wave induced noise limits in miniature soliton microwave sources. Nat. Commun. 12, 1442 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  21. Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 14, 480–485 (2020).

    Article  CAS  Google Scholar 

  22. Liu, F., Menyuk, C. R. & Chembo, Y. K. A stochastic approach to phase noise analysis for microwaves generated with Kerr optical frequency combs. Commun. Phys. 6, 117 (2023).

    Article  CAS  Google Scholar 

  23. Coillet, Aurélien & Chembo, Y. On the robustness of phase locking in Kerr optical frequency combs. Opt. Lett. 39, 1529–1532 (2014).

    Article  PubMed  ADS  Google Scholar 

  24. Jang, J. K. et al. Synchronization of coupled optical microresonators. Nat. Photon. 12, 688–693 (2018).

    Article  CAS  ADS  Google Scholar 

  25. Kim, BokYoung et al. Synchronization of nonsolitonic Kerr combs. Sci. Adv. 7, eabi4362 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  26. Chembo, Y. K. & Yu, N. Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators. Phys. Rev. A 82, 033801 (2010).

    Article  ADS  Google Scholar 

  27. Coen, Stéphane & Erkintalo, M. Universal scaling laws of Kerr frequency combs. Opt. Lett. 38, 1790–1792 (2013).

    Article  PubMed  ADS  Google Scholar 

  28. Godey, C., Balakireva, I. V., Coillet, Aurélien & Chembo, Y. K. Stability analysis of the spatiotemporal lugiato-lefever model for kerr optical frequency combs in the anomalous and normal dispersion regimes. Phys. Rev. A 89, 063814 (2014).

    Article  ADS  Google Scholar 

  29. Kwon, D. et al. Reference-free, high-resolution measurement method of timing jitter spectra of optical frequency combs. Sci. Rep. 7, 1–9 (2017).

    Article  Google Scholar 

  30. Tian, H. et al. Optical frequency comb noise spectra analysis using an asymmetric fiber delay line interferometer. Opt. Express 28, 9232–9243 (2020).

    Article  PubMed  ADS  Google Scholar 

  31. Gorodetksy, M. L., Schliesser, A., Anetsberger, G., Deleglise, S. & Kippenberg, T. J. Determination of the vacuum optomechanical coupling rate using frequency noise calibration. Opt. Express 18, 23236–23246 (2010).

    Article  ADS  Google Scholar 

  32. Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).

    Article  CAS  ADS  Google Scholar 

  33. Joshi, C. et al. Thermally controlled comb generation and soliton modelocking in microresonators. Opt. Lett. 41, 2565–2568 (2016).

    Article  PubMed  ADS  Google Scholar 

  34. Liu, J. et al. Photonic microwave generation in the X- and K-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).

    Article  CAS  ADS  Google Scholar 

  35. Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photonics Technol. Lett. 14, 483–485 (2002).

    Article  ADS  Google Scholar 

  36. Zhao, Y., McNulty, K. J., Lipson, M. & Gaeta, A. L. Active tuning of the microresonator coupling condition with coupled rings. In Conference on Lasers and Electro-Optics (eds. Gan, Q., Saraceno, C., Da Ros, F. & Vasilyev, S.) SW4L.8 (Optica Publishing Group, 2023).

  37. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Weng, W. et al. Coherent terahertz-to-microwave link using electro-optic-modulated Turing rolls. Phys. Rev. A 104, 023511 (2021).

    Article  CAS  ADS  Google Scholar 

  39. Guha, B., Cardenas, J. & Lipson, M. Athermal silicon microring resonators with titanium oxide cladding. Opt. Express 21, 26557–26563 (2013).

    Article  PubMed  ADS  Google Scholar 

  40. Djordjevic, S. S. et al. CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. Opt. Express 21, 13958–13968 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  41. Rodrigues, J. R. et al. SiN-based waveguides with ultra-low thermo-optic effect. In Conference on Lasers and Electro-Optics (eds. Prasankumar, R., Tanabe, T., Brès, C. S. & Paiella, R.) SM4G.3 (Optica Publishing Group, 2022).

  42. Raghunathan, V. et al. Athermal operation of silicon waveguides: spectral, second order and footprint dependencies. Opt. Express 18, 17631–17639 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Kalubovilage, M., Endo, M. & Schibli, T. R. Ultra-low phase noise microwave generation with a free-running monolithic femtosecond laser. Opt. Express 28, 25400–25409 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Kalubovilage, M., Endo, M. & Schibli, T. R. X-Band photonic microwaves with phase noise below -180 dBc/Hz using a free-running monolithic comb. Opt. Express 30, 11266–11274 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  45. Xie, X. et al. Photonic microwave signals with zeptosecond-level absolute timing noise. Nat. Photon. 11, 44–47 (2017).

    Article  CAS  ADS  Google Scholar 

  46. Li, J. & Vahala, K. Small-sized, ultra-low phase noise photonic microwave oscillators at X-Ka bands. Optica 10, 33–34 (2023).

    Article  ADS  Google Scholar 

  47. Jang, J. K. et al. Conversion efficiency of soliton Kerr combs. Opt. Lett. 46, 3657–3660 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  48. Kondratiev, N., Lobanov, V., Dmitriev, N., Cordette, S. & Bilenko, I. Analysis of parameter combinations for optimal soliton microcomb generation efficiency in a simple single-cavity scheme. Phys. Rev. A 107, 063508 (2023).

  49. Sun, S. et al. Integrated optical frequency division for microwave and mmwave generation. Nature https://doi.org/10.1038/s41586-024-07057-0 (2024).

Download references

Acknowledgements

This work was performed in part at the Cornell Nano-Scale Facility, which is a member of the National Nanotechnology Infrastructure Network, supported by the NSF and in part at the CUNY Advanced Science Research Center NanoFabrication Facility. We acknowledge computing resources from Columbia University’s Shared Research Computing Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-01 and associated funds from the New York State Empire State Development, Division of Science Technology and Innovation (NYSTAR) Contract C090171, both awarded 15 April 2010. We thank T. Schibli, Y. Levin, K. Bergman and M. Hattink for helpful discussions. This work was supported by Defense Advanced Research Projects Agency of the US Department of Defense (Grant No. HR0011-22-2-0007), Army Research Office (ARO) (Grant No. W911NF-21-1-0286) and Air Force Office of Scientific Research (AFOSR) (Grant No. FA9550-20-1-0297).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., Y.O. and A.L.G conceived the project. Y.Z. and J.K.J. performed the theoretical analysis. Y.Z., J.K.J. and G.J.B. performed the experiment. Y.Z., J.K.J., Y.O. and A.L.G. performed the data analysis with input from all authors. X.J. and K.J.M. fabricated the silicon-nitride devices under the supervision of M.L. Y.Z., J.K.J. and A.L.G. wrote the manuscript with feedback from all authors. M.L. and A.L.G. supervised the project.

Corresponding author

Correspondence to Alexander L. Gaeta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Olivier Llopis, Florian Sedlmeir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Thermal noise characterization.

(a), Homodyne setup for thermal noise characterization of microresonators. DUT, device under test. (b), Measured thermal noise of the SiN device at room temperature (0V) and when a heating voltage is applied using a commercial arbitrary-waveform generator (1.3 V).

Extended Data Fig. 2 Experiment setup for 16-GHz microwave generation and characterization.

EDFA, erbium-doped fibre amplifier; WDM, wavelength division multiplexer. Two near-identical spiral resonators are used for OPO and soliton-comb generation, respectively. The output of the OPO chip is combined with the pump for the soliton chip via a fibre-based WDM to facilitate synchronization.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and sections I–IV regarding theoretical model and numerical simulations: I, Schawlow–Townes linewidth of optical parametric oscillator; II, Classical phase-noise sources of optical parametric oscillator; III, Numerical model of synchronization; IV, Design example of the athermal waveguide.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Jang, J.K., Beals, G.J. et al. All-optical frequency division on-chip using a single laser. Nature 627, 546–552 (2024). https://doi.org/10.1038/s41586-024-07136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-024-07136-2

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing