Optics and photonics articles within Nature Physics

Featured

  • News & Views |

    When photons impinge on a material, free electrons can be created by the photoelectric effect. The emitted electron current usually fluctuates with Poisson statistics, but if squeezed quantum light is applied, the electrons bunch up.

    • Alfred Leitenstorfer
    •  & Peter Baum
  • Perspective |

    Although topological photonics has been an active field of research for some time, most studies still focus on the linear optical regime. This Perspective summarizes recent investigations into the nonlinear properties of discrete topological photonic systems.

    • Alexander Szameit
    •  & Mikael C. Rechtsman
  • News & Views |

    Even by shining classical light on a single opening, one can perform a double-slit experiment and discover a surprising variety of quantum mechanical multi-photon correlations — thanks to surface plasmon polaritons and photon-number-resolving detectors.

    • Martijn Wubs
  • Research Briefing |

    The concept of temporal mode-locking has been leveraged to study the interplay between laser mode-locking and photonic lattices that exhibit non-Hermitian topological phenomena. The results suggest new opportunities to study nonlinear and non-Hermitian topological physics as well as potential applications to sensing, optical computing and frequency-comb design.

  • Article |

    Mode locking, which is a common technique to produce short laser pulses, is demonstrated in a topological laser.

    • Christian R. Leefmans
    • , Midya Parto
    •  & Alireza Marandi
  • Article |

    Most applications of surface plasmons are based on their near-field properties. These properties are now shown to be governed by nonclassical scattering between multiparticle plasmonic subsystems.

    • Mingyuan Hong
    • , Riley B. Dawkins
    •  & Omar S. Magaña-Loaiza
  • News & Views |

    Interacting emitters are the fundamental building blocks of quantum optics and quantum information devices. Pairs of organic molecules embedded in a crystal can become permanently strongly interacting when they are pumped with intense laser light.

    • Stuart J. Masson
  • Measure for Measure |

    Adaptive optics allows scientists to correct for distortions of an image caused by the scattering of light. Anita Chandran illuminates the nature of the technique.

    • Anita Mary Chandran
  • Article |

    It has been suggested that Gaussian boson sampling may provide a quantum computational advantage for calculating the vibronic spectra of molecules. Now, an equally efficient classical algorithm has been identified.

    • Changhun Oh
    • , Youngrong Lim
    •  & Liang Jiang
  • Research Briefing |

    Subwavelength photonic gratings can host long-lived, negative-effective-mass photonic modes that couple strongly to electron transitions in constituent active materials. The resulting bosonic hybrid light–matter modes, or exciton-polaritons, can be optically configured to accumulate into various macroscopic artificial complexes and lattices of coherent quantum fluids.

  • News & Views |

    Trojan beams, which are optical counterparts of Trojan asteroids that maintain stable orbits alongside planets, have been successfully showcased in experiments, opening up possibilities for transporting light in unconventional settings.

    • Tomáš Tyc
    •  & Tomáš Čižmár
  • Article |

    Twisted structures are shown to confine and guide light without total internal reflection, using an effect analogous to the stable Lagrange points in celestial mechanics.

    • Haokun Luo
    • , Yunxuan Wei
    •  & Mercedeh Khajavikhan
  • News & Views |

    Understanding the mechanism underlying light-induced superconductivity could help manifest it at higher temperatures. Experiments now show that the excitation of a specific phonon leads to a resonant enhancement of this effect in K3C60.

    • Jingdi Zhang
  • News & Views |

    A decade ago, the anti-laser made waves as a new type of perfect absorber that functions as a one-way trap door for light. Experiments have now demonstrated the control of light without absorbing it.

    • A. Douglas Stone
  • News & Views |

    A nonlinear optical approach has now enabled picosecond control of a complex band structure, driving a non-Hermitian topological phase transition across an exceptional-point singularity.

    • Jiangbin Gong
    •  & Ching Hua Lee
  • Article
    | Open Access

    There is evidence that K3C60 can host a photo-induced superconducting state. Now, resonant excitation at low frequencies allows this phenomenon at room temperature and low pumping fluence.

    • E. Rowe
    • , B. Yuan
    •  & A. Cavalleri
  • Article
    | Open Access

    Material characterization of liquids in extreme thermodynamic conditions is a challenging technical problem. Brillouin scattering metrology in an optical fibre design with a sealed liquid core now enables spatially resolved temperature and pressure measurements, using carbon disulfide as an example.

    • Andreas Geilen
    • , Alexandra Popp
    •  & Birgit Stiller
  • Article |

    Phonons that carry a large magnetic moment may be helpful for creating spintronic devices. Now this phenomenon is observed in an antiferromagnet and is enhanced by the critical fluctuations associated with a phase transition.

    • Fangliang Wu
    • , Song Bao
    •  & Qi Zhang
  • News & Views |

    Time-varying photonics offers ways to manipulate light–matter interactions as never thought before. An experiment with photonic time interfaces reveals how they can enable broadband coherent control of waves.

    • Victor Pacheco-Peña
  • News & Views |

    Generating high harmonics or attosecond pulses of light is normally thought of as a classical process, but a theoretical study has now shown how the process could be driven by quantum light.

    • Dong Hyuk Ko
    •  & P. B. Corkum
  • Article |

    High-harmonic generation is a source of high-frequency radiation and is typically driven by strong, but classical, laser fields. A theoretical study now shows that using quantum light states as the driver extends the spectrum of outgoing radiation in a controllable manner.

    • Alexey Gorlach
    • , Matan Even Tzur
    •  & Ido Kaminer
  • News & Views |

    Measuring the transmission matrix of disordered structures has so far been limited to the domain of linear systems. Now it has been measured for nonlinear disorder, with exciting implications for information capacity.

    • Sushil Mujumdar
  • Article |

    Disordered media with their numerous scattering channels can be used as optical operators. Measurements of the scattering tensor of a second-harmonic medium extend this computing application to the nonlinear regime.

    • Jungho Moon
    • , Ye-Chan Cho
    •  & Wonshik Choi
  • News & Views |

    Whether Anderson localization of light is possible in three dimensions has long been an open question. Numerical calculations have now shown that it can be done with a disordered arrangement of metal particles.

    • Diederik S. Wiersma
  • Article
    | Open Access

    Coulomb interactions in free-electron beams are usually seen as an adverse effect. The creation of distinctive number states with one, two, three and four electrons now reveals unexpected opportunities for electron microscopy and lithography from Coulomb correlations.

    • Rudolf Haindl
    • , Armin Feist
    •  & Claus Ropers
  • Article |

    Although massive electrons and massless photons are known to interact, their study has so far been confined to the linear regime. Experiments showing two-photon coherent control of a free-electron matter wave now introduce non-linearities.

    • Maxim Tsarev
    • , Johannes W. Thurner
    •  & Peter Baum
  • News & Views |

    Imposing PT-symmetry and pseudo-Hermitian symmetry on an electric circuit with non-reciprocal couplings results in a complex morphology of degenerate eigenvalues that might yield new possibilities in sensing and dynamical engineering.

    • Savannah Garmon
  • Article |

    Engineering the frequency spectrum of systems of multiple quantum emitters is the key for many quantum technologies. A cavity quantum electrodynamics experiment now demonstrates the real-time frequency modulation of cavity-protected polaritons.

    • Mohamed Baghdad
    • , Pierre-Antoine Bourdel
    •  & Romain Long
  • Article |

    Normally, quantum operations are thought of as being applied in a particular order, but it is possible to create superpositions of different orders. An experiment now demonstrates this indefinite causal order may give an advantage for quantum sensing.

    • Peng Yin
    • , Xiaobin Zhao
    •  & Guang-Can Guo
  • Research Briefing |

    Time crystals are a new state of matter. Conventional crystal properties are periodic in space, while the properties of a time crystal are periodic in time. A continuous quantum time crystal has recently been realized, and now, using optically driven many-body interactions in a nano-mechanical photonic metamaterial, a classical continuous time crystal has been created.

  • Article
    | Open Access

    Some topological boundary states are symmetry protected. Experiments with photonic lattices now show that the protection via sub-symmetry is enough to ensure topological modes, even if the full symmetry and topological invariant are destroyed.

    • Ziteng Wang
    • , Xiangdong Wang
    •  & Hrvoje Buljan
  • News & Views |

    Levitated nanoparticles can now be cooled to the motional ground state in two dimensions. This advance could enable a new generation of macroscopic quantum experiments.

    • Dalziel J. Wilson
  • News & Views |

    Time-varying photonics constitutes an emerging concept where a material’s time-dependence is used to achieve novel functionalities. A temporal double-slit-diffraction experiment demonstrates the feasibility of time-modulating materials to control light.

    • Francisco J. Rodríguez-Fortuño