Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Guiding Trojan light beams via Lagrange points

Abstract

The guided transmission of optical waves is critical for light-based applications in modern communication, information processing and energy generation systems. Traditionally, the guiding of light waves in structures such as optical fibres has been predominantly achieved through the use of total internal reflection. In periodic platforms, a variety of other physical mechanisms can also be deployed to transport optical waves. However, transversely confining light in fully dielectric, non-periodic and passive configurations remains a challenge in situations where total internal reflection is not supported. Here we present an approach to trapping light that utilizes the exotic features of Lagrange points—a special class of equilibrium positions akin to those responsible for capturing Trojan asteroids in celestial mechanics. This is achieved in twisted arrangements in which optical Coriolis forces induce guiding channels even at locations where the refractive index landscape is defocusing or entirely unremarkable. These findings may have implications beyond standard optical waveguiding schemes and could also apply to other physical systems such as acoustics, electron beams and ultracold atoms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Celestial and optical beam dynamics in the vicinity of a stable Lagrange point.
Fig. 2: Light propagation dynamics around a stable Lagrange point.
Fig. 3: Trojan beam guiding in the index potential produced by a single helical heat source.
Fig. 4: Trojan beam trapping in the index landscape produced by a double-helix current source.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The used numerical codes are based upon MATLAB and COMSOL and are available upon reasonable request to the corresponding authors.

References

  1. Snyder, A. W. & Love, J. D. Optical Waveguide Theory (Springer, 1983).

  2. Knight, J. C. Photonic crystal fibres. Nature 424, 847–851 (2003).

    Article  ADS  Google Scholar 

  3. Birks, T. A., Knight, J. C. & Russell, P. S. J. Endlessly single-mode photonic crystal fiber. Opt. Lett. 22, 961–963 (1997).

    Article  ADS  Google Scholar 

  4. Ibanescu, M., Fink, Y., Fan, S., Thomas, E. L. & Joannopoulos, J. D. An all-dielectric coaxial waveguide. Science 289, 415–419 (2000).

    Article  ADS  Google Scholar 

  5. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: putting a new twist on light. Nature 386, 143–149 (1997).

    Article  ADS  Google Scholar 

  6. Yeh, P., Yariv, A. & Marom, E. Theory of Bragg fiber. J. Opt. Soc. Am. 68, 1196–1201 (1978).

    Article  ADS  Google Scholar 

  7. Bandres, M. A. et al. Topological insulator laser: experiments. Science 359, eaar4005 (2018).

    Article  Google Scholar 

  8. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  Google Scholar 

  9. Wimmer, M., Price, H. M., Carusotto, I. & Peschel, U. Experimental measurement of the Berry curvature from anomalous transport. Nat. Phys. 13, 545–550 (2017).

    Article  Google Scholar 

  10. Weidemann, S. et al. Topological funneling of light. Science 368, 311–314 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  11. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nat. Phys. 6, 192–195 (2010).

    Article  Google Scholar 

  12. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  13. Shalaev, V. M. Optical negative-index metamaterials. Nat. Photon. 1, 41–48 (2007).

    Article  ADS  Google Scholar 

  14. Engheta, N. & Ziolkowski, R. W. Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

  15. Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

    Article  ADS  Google Scholar 

  16. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  17. Freedman, B. et al. Grating-mediated wave guiding and holographic solitons. J. Opt. Soc. Am. B 22, 1349–1355 (2005).

    Article  ADS  Google Scholar 

  18. Habib, M. S., Antonio-Lopez, J. E., Markos, C., Schülzgen, A. & Amezcua-Correa, R. Single-mode, low loss hollow-core anti-resonant fiber designs. Opt. Express 27, 3824–3836 (2019).

    Article  ADS  Google Scholar 

  19. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  ADS  Google Scholar 

  20. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  21. Brongersma, M. L. & Kik, P. G. Surface Plasmon Nanophotonics (Springer, 2007).

  22. Siegman, A. E. Propagating modes in gain-guided optical fibers. J. Opt. Soc. Am. A 20, 1617–1628 (2003).

    Article  ADS  Google Scholar 

  23. Bannikova, E. & Capaccioli, M. Foundations of Celestial Mechanics (Springer, 2022).

  24. Pérez-Villegas, A., Portail, M., Wegg, C. & Gerhard, O. Revisiting the tale of Hercules: how stars orbiting the Lagrange points visit the Sun. Astrophys. J. Lett. 840, L2 (2017).

    Article  ADS  Google Scholar 

  25. Bialynicki-Birula, I., Kaliński, M. & Eberly, J. H. Lagrange equilibrium points in celestial mechanics and nonspreading wave packets for strongly driven Rydberg electrons. Phys. Rev. Lett. 73, 1777–1780 (1994).

    Article  ADS  Google Scholar 

  26. Kalinski, M. & Eberly, J. H. New states of hydrogen in a circularly polarized electromagnetic field. Phys. Rev. Lett. 77, 2420–2423 (1996).

    Article  ADS  Google Scholar 

  27. Buchleitner, A., Delande, D. & Zakrzewski, J. Non-dispersive wave packets in periodically driven quantum systems. Phys. Rep. 368, 409–547 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  28. Mueller, E. J., Ho, T.-L., Ueda, M. & Baym, G. Fragmentation of Bose–Einstein condensates. Phys. Rev. A 74, 033612 (2006).

    Article  ADS  Google Scholar 

  29. Longhi, S. Bloch dynamics of light waves in helical optical waveguide arrays. Phys. Rev. B 76, 195119 (2007).

    Article  ADS  Google Scholar 

  30. Beravat, R., Wong, G. K. L., Frosz, M. H., Xi, X. M. & Russell, P. S. J. Twist-induced guidance in coreless photonic crystal fiber: a helical channel for light. Sci. Adv. 2, e1601421 (2016).

    Article  ADS  Google Scholar 

  31. Paul, W. Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990).

    Article  ADS  Google Scholar 

  32. Harari, G., Ben-Aryeh, Y. & Mann, A. Propagator for the general time-dependent harmonic oscillator with application to an ion trap. Phys. Rev. A 84, 062104 (2011).

    Article  ADS  Google Scholar 

  33. Rebane, T. K. Two-dimensional oscillator in a magnetic field. J. Exp. Theor. Phys. 114, 220–225 (2012).

    Article  ADS  Google Scholar 

  34. Landau, L. D. & Lifshitz, E. M. in Quantum Mechanics 3rd edn (Ed. Pitavskii, L. P.) 453–471 (Pergamon, 1977).

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research (AFOSR) Multidisciplinary University Research Initiative (MURI) award on Novel light-matter interactions in topologically non-trivial Weyl semimetal structures and systems (award no. FA9550-20-1-0322) (M.K., D.N.C., H.L., Y.W., F.O.W. and G.G.P.), AFOSR MURI award on Programmable systems with non-Hermitian quantum dynamics (award no. FA9550-21-1-0202) (M.K., D.N.C., H.L., Y.W., F.O.W. and G.G.P.), ONR MURI award on the classical entanglement of light (award no. N00014-20-1-2789) (M.K., D.N.C., H.L., Y.W., F.O.W. and G.G.P.), AFRL – Applied Research Solutions (S03015) (FA8650-19-C-1692) (M.K.), W.M. Keck Foundation (D.N.C.), MPS Simons collaboration (Simons grant no. 733682) (D.N.C.) and US Air Force Research Laboratory (FA86511820019) (D.N.C.).

Author information

Authors and Affiliations

Authors

Contributions

D.N.C. and M.K. conceived the idea. H.L., Y.W., F.O.W. and G.G.P. developed the theory. H.L. and Y.W. conducted the simulations, data analysis and the experiments. All the authors contributed to the writing of the original draft, reviewing and editing.

Corresponding authors

Correspondence to Demetrios N. Christodoulides or Mercedeh Khajavikhan.

Ethics declarations

Inclusion and ethics

All authors acknowledge the Global Research Code on the development, implementation and communication of this research. For the purpose of transparency, we have included this statement on inclusion and ethics. This work cites a comprehensive list of research from around the world on related topics.

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Ulf Leonhardt and Tomáš Tyc for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–9, Figs. 1–6 and Table 1.

Source data

Source Data Fig. 3c

Variation of the beam’s mean spot size as a function of distance for current I = 4.0 A.

Source Data Fig. 3d

Dependence of the Trojan mode’s output mean spot size and ellipticity versus square of current.

Source Data Fig. 4e

Variation of the beam’s mean spot size as a function of distance for I = 3.5 A.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, H., Wei, Y., Wu, F.O. et al. Guiding Trojan light beams via Lagrange points. Nat. Phys. 20, 95–100 (2024). https://doi.org/10.1038/s41567-023-02270-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02270-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing