Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Reply to: Gauge non-invariance due to material truncation in ultrastrong-coupling quantum electrodynamics

The Original Article was published on 22 December 2023

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Stokes, A. & Nazir, A. Gauge non-invariance due to material truncation in ultrastrong-coupling quantum electrodynamics. Nat. Phys. https://doi.org/10.1038/s41567-023-02155-8 (2023).

  2. Di Stefano, O. et al. Resolution of gauge ambiguities in ultrastrong-coupling cavity QED. Nat. Phys. 15, 803 (2019).

    Article  Google Scholar 

  3. Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974).

    Article  CAS  ADS  Google Scholar 

  4. Gattringer, C. & Lang, C. B. Quantum Chromodynamics On the Lattice: An Introductory Presentation (Springer, 2010).

  5. Wiese, U.-J. Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories. Ann. Phys. 525, 777–796 (2013).

    Article  MathSciNet  CAS  Google Scholar 

  6. Stokes, A. & Nazir, A. Gauge ambiguities imply Jaynes-Cummings physics remains valid in ultrastrong coupling QED. Nat. Commun. 10, 499 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. De Bernardis, D., Pilar, P., Jaako, T., De Liberato, S. & Rabl, P. Breakdown of gauge invariance in ultrastrong-coupling cavity QED. Phys. Rev. A 98, 053819 (2018).

    Article  ADS  Google Scholar 

  8. Maggiore, M. A Modern Introduction to Quantum Field Theory Vol. 12 (Oxford Univ. Press, 2005).

  9. Savasta, S. et al. Gauge principle and gauge invariance in two-level systems. Phys. Rev. A 103, 053703 (2021).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  10. Peierls, R. Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys. 80, 763–790 (1933).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Please detail the contributions of all authors here.

Corresponding author

Correspondence to Salvatore Savasta.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefano, O.D., Settineri, A., Macrì, V. et al. Reply to: Gauge non-invariance due to material truncation in ultrastrong-coupling quantum electrodynamics. Nat. Phys. 20, 379–380 (2024). https://doi.org/10.1038/s41567-023-02178-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02178-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing