Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantized topological pumping in Floquet synthetic dimensions with a driven dissipative photonic molecule

Abstract

Topological effects are characterized by topological invariants, which are typically integer-valued, and lead to robust quantized transport channels in space, time and other degrees of freedom. The temporal channel in particular allows one to achieve higher-dimensional topological effects by driving the system with several incommensurate frequencies. However, dissipation is generally detrimental to such topological effects. Here we introduce a photonic molecule subjected to dissipation and several radio-frequency and optical drives as a candidate system for observing quantized transport along Floquet synthetic dimensions. We describe preliminary experiments contrasting the topological and trivial phases. Topological energy pumping in the incommensurately modulated photonic molecule is enhanced by the driven and dissipative nature of our platform. Furthermore, we provide a path for realizing Weyl points and measuring the Berry curvature emanating from these reciprocal-space magnetic monopoles and illustrate the capabilities for higher-dimensional topological Hamiltonian simulation in this platform. Our approach enables direct k-space engineering of a wide variety of Hamiltonians using modulation bandwidths that are well below the free spectral range of integrated photonic cavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the proposed system.
Fig. 2: Signatures of topological dynamics with optical driving and dissipation.
Fig. 3: Work done by the drives.
Fig. 4: Experimental data from a fibre-based photonic molecule.
Fig. 5: Eigenenergy of \({{{\mathcal{H}}}}\) and the DoS.
Fig. 6: Weyl-point band structure and Berry curvature.

Similar content being viewed by others

Data availability

Source data are available for this paper and have been deposited in the Zenodo database under accession code https://doi.org/10.5281/zenodo.10530864.

References

  1. Klitzing, K. V., Dorda, G. & Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494–497 (1980).

    Article  ADS  Google Scholar 

  2. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Miyake, H., Siviloglou, G. A., Kennedy, C. J., Burton, W. C. & Ketterle, W. Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices. Phys. Rev. Lett. 111, 185302 (2013).

    Article  ADS  PubMed  Google Scholar 

  4. Aidelsburger, M. et al. Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices. Phys. Rev. Lett. 111, 185301 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Price, H. et al. Roadmap on topological photonics. J. Phys. Photonics 4, 032501 (2022).

    Article  ADS  Google Scholar 

  6. Khanikaev, A. B., Fleury, R., Mousavi, S. H. & Alu, A. Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice. Nat. Commun. 6, 8260 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article  Google Scholar 

  8. Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).

    Article  CAS  Google Scholar 

  9. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge states in silicon photonics. Nat. Photonics 7, 1001–1005 (2013).

    Article  ADS  CAS  Google Scholar 

  10. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Aidelsburger, M. et al. Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms. Nat. Phys. 11, 162–166 (2015).

    Article  CAS  Google Scholar 

  12. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Atala, M. et al. Observation of chiral currents with ultracold atoms in bosonic ladders. Nat. Phys. 10, 588–593 (2014).

    Article  CAS  Google Scholar 

  14. Ozawa, T. & Carusotto, I. Anomalous and quantum Hall effects in lossy photonic lattices. Phys. Rev. Lett. 112, 133902 (2014).

    Article  ADS  PubMed  Google Scholar 

  15. Yuan, L., Dutt, A. & Fan, S. Synthetic frequency dimensions in dynamically modulated ring resonators. APL Photonics 6, 071102 (2021).

    Article  ADS  Google Scholar 

  16. Ozawa, T. & Price, H. M. Topological quantum matter in synthetic dimensions. Nat. Rev. Phys. 1, 349–357 (2019).

    Article  Google Scholar 

  17. Yuan, L., Dutt, A., Qin, M., Fan, S. & Chen, X. Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons. Photonics Res 8, B8–B14 (2020).

    Article  Google Scholar 

  18. Leefmans, C. et al. Topological dissipation in a time-multiplexed photonic resonator network. Nat. Phys. 18, 442–449 (2022).

    Article  CAS  Google Scholar 

  19. Bartlett, B., Dutt, A. & Fan, S. Deterministic photonic quantum computation in a synthetic time dimension. Optica 8, 1515–1523 (2021).

    Article  ADS  Google Scholar 

  20. Lustig, E. et al. Photonic topological insulator in synthetic dimensions. Nature 567, 356–360 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions. Science 367, 59–64 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Boada, O., Celi, A., Latorre, J. I. & Lewenstein, M. Quantum simulation of an extra dimension. Phys. Rev. Lett. 108, 133001 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Stuhl, B. K., Lu, H.-I., Aycock, L. M., Genkina, D. & Spielman, I. B. Visualizing edge states with an atomic Bose gas in the quantum Hall regime. Science 349, 1514–1518 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  24. Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons. Science 349, 1510–1513 (2015).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  25. Sundar, B., Gadway, B. & Hazzard, K. R. A. Synthetic dimensions in ultracold polar molecules. Sci. Rep. 8, 3422 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  26. Luo, X.-W. et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities. Nat. Commun. 6, 7704 (2015).

    Article  ADS  PubMed  Google Scholar 

  27. Kanungo, S. K. et al. Realizing topological edge states with Rydberg-atom synthetic dimensions. Nat. Commun. 13, 972 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, M. et al. Realization of exceptional points along a synthetic orbital angular momentum dimension. Sci. Adv. 9, eabp8943 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hu, Y., Reimer, C., Shams-Ansari, A., Zhang, M. & Loncar, M. Realization of high-dimensional frequency crystals in electro-optic microcombs. Optica 7, 1189–1194 (2020).

    Article  ADS  CAS  Google Scholar 

  30. Yuan, L., Shi, Y. & Fan, S. Photonic gauge potential in a system with a synthetic frequency dimension. Opt. Lett. 41, 741–744 (2016).

    Article  ADS  PubMed  Google Scholar 

  31. Yuan, L. & Fan, S. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator. Optica 3, 1014–1018 (2016).

    Article  ADS  Google Scholar 

  32. Wang, K. et al. Generating arbitrary topological windings of a non-Hermitian band. Science 371, 1240–1245 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Senanian, A., Wright, L. G., Wade, P. F., Doyle, H. K. & McMahon, P. L. Programmable large-scale simulation of bosonic transport in optical synthetic frequency lattices. Nat. Phys. 19, 1333–1339 (2023).

    Article  CAS  Google Scholar 

  34. Wang, J. et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  35. Dutt, A. et al. Creating boundaries along a synthetic frequency dimension. Nat. Commun. 13, 3377 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu, X., Rao, A., Moille, G., Westly, D. A. & Srinivasan, K. Universal frequency engineering tool for microcavity nonlinear optics: multiple selective mode splitting of whispering-gallery resonances. Photon. Res. 8, 1676–1686 (2020).

    Article  CAS  Google Scholar 

  37. Spreeuw, R. J. C., van Druten, N. J., Beijersbergen, M. W., Eliel, E. R. & Woerdman, J. P. Classical realization of a strongly driven two-level system. Phys. Rev. Lett. 65, 2642–2645 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Zhang, M. et al. Electronically programmable photonic molecule. Nat. Photonics 13, 36–40 (2018).

    Article  ADS  Google Scholar 

  39. Martin, I., Refael, G. & Halperin, B. Topological frequency conversion in strongly driven quantum systems. Phys. Rev. X 7, 041008 (2017).

    Google Scholar 

  40. Boyers, E., Crowley, P. J. D., Chandran, A. & Sushkov, A. O. Exploring 2D synthetic quantum Hall physics with a quasiperiodically driven qubit. Phys. Rev. Lett. 125, 160505 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Malz, D. & Smith, A. Topological two-dimensional Floquet lattice on a single superconducting qubit. Phys. Rev. Lett. 126, 163602 (2021).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  42. Dubček, T. et al. Weyl points in three-dimensional optical lattices: synthetic magnetic monopoles in momentum space. Phys. Rev. Lett. 114, 225301 (2015).

    Article  ADS  PubMed  Google Scholar 

  43. Qi, X.-L., Wu, Y.-S. & Zhang, S.-C. Topological quantization of the spin Hall effect in two-dimensional paramagnetic semiconductors. Phys. Rev. B 74, 085308 (2006).

    Article  ADS  Google Scholar 

  44. Bernevig, B. A., Hughes, T. L. & Zhang, S.-C. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757–1761 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Ryu, S., Schnyder, A. P., Furusaki, A. & Ludwig, A. W. W. Topological insulators and superconductors: tenfold way and dimensional hierarchy. N. J. Phys. 12, 065010 (2010).

    Article  Google Scholar 

  46. Nathan, F., Martin, I. & Refael, G. Topological frequency conversion in a driven dissipative quantum cavity. Phys. Rev. B 99, 094311 (2019).

    Article  ADS  CAS  Google Scholar 

  47. Long, D. M., Crowley, P. J., Kollár, A. J. & Chandran, A. Boosting the quantum state of a cavity with Floquet driving. Phys. Rev. Lett. 128, 183602 (2022).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  48. Dutt, A., Minkov, M., Williamson, I. A. D. & Fan, S. Higher-order topological insulators in synthetic dimensions. Light Sci. Appl. 9, 131 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Crowley, P. J. D., Martin, I. & Chandran, A. Topological classification of quasiperiodically driven quantum systems. Phys. Rev. B 99, 064306 (2019).

    Article  ADS  CAS  Google Scholar 

  50. Bell, B. A. et al. Spectral photonic lattices with complex long-range coupling. Optica 4, 1433–1436 (2017).

    Article  ADS  CAS  Google Scholar 

  51. Wang, K. et al. Multidimensional synthetic chiral-tube lattices via nonlinear frequency conversion. Light Sci. Appl. 9, 132 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tian, H. et al. Magnetic-free silicon nitride integrated optical isolator. Nat. Photonics 15, 828–836 (2021).

    Article  ADS  Google Scholar 

  53. Gao, R. et al. Lithium niobate microring with ultra-high Q factor above 108. Chin. Opt. Lett. 20, 011902 (2022).

    Article  ADS  Google Scholar 

  54. Li, G. et al. Direct extraction of topological Zak phase with the synthetic dimension. Light Sci. Appl. 12, 81 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Turner, A. M., Vishwanath, A. & Head, C. O. Beyond band insulators: topology of semimetals and interacting phases. Topol. Insul. 6, 293 (2013).

    Google Scholar 

  56. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Vaidya, S. et al. Observation of a charge-2 photonic Weyl point in the infrared. Phys. Rev. Lett. 125, 253902 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Bernevig, B. A. Topological Insulators and Topological Superconductors (Princeton Univ. Press, 2013).

  60. Boriskina, S. V. Spectrally engineered photonic molecules as optical sensors with enhanced sensitivity: a proposal and numerical analysis. J. Opt. Soc. Am. B 23, 1565–1573 (2006).

    Article  ADS  CAS  Google Scholar 

  61. Helgason, Ó. B. et al. Dissipative solitons in photonic molecules. Nat. Photonics 15, 305–310 (2021).

    Article  ADS  CAS  Google Scholar 

  62. Zhang, Y. et al. Squeezed light from a nanophotonic molecule. Nat. Commun. 12, 2233 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Guidry, M. A., Lukin, D. M., Yang, K. Y. & Vučković, J. Multimode squeezing in soliton crystal microcombs. Optica 10, 694–701 (2023).

    Article  ADS  CAS  Google Scholar 

  64. Jiang, X., Lin, Q., Rosenberg, J., Vahala, K. & Painter, O. High-Q double-disk microcavities for cavity optomechanics. Opt. Express 17, 20911–20919 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Hara, Y., Mukaiyama, T., Takeda, K. & Kuwata-Gonokami, M. Photonic molecule lasing. Opt. Lett. 28, 2437–2439 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Zhang, M., Wang, C., Cheng, R., Shams-Ansari, A. & Lončar, M. Monolithic ultra-high-Q lithium niobate microring resonator. Optica 4, 1536–1537 (2017).

    Article  ADS  CAS  Google Scholar 

  67. Yang, F. et al. Monolithic thin film lithium niobate electro-optic modulator with over 110 GHz bandwidth. Chin. Opt. Lett. 20, 022502 (2022).

    Article  ADS  Google Scholar 

  68. del Campo, A. Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Northrop Grumman seed grant, a National Quantum Laboratory joint seed grant from IonQ and the University of Maryland, and a grant from the National Science Foundation for Quantum Sensing Challenges for Transformational Advances in Quantum Systems (Grant No. 2326792). We thank C. Smith for Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

S.K.S. and A.D. worked out the idea and proposal. S.K.S. and S.G. formulated the theory and performed the simulations. S.K.S. built the experimental set-up, with contributions from D.S. and A.R.M. S.K.S. performed the measurements and analysed the data. S.K.S. and A.D. wrote the paper. A.D. supervised the project.

Corresponding author

Correspondence to Avik Dutt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I and II and Figs. 1–8.

Supplementary Video 1

Bloch sphere evolution of the topological phase.

Supplementary Video 2

Bloch sphere evolution of the trivial phase.

Supplementary Video 3

Bloch sphere evolution for m = 1 (rational drives).

Supplementary Video 4

Bloch sphere evolution for m = 3 (rational drives).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sridhar, S.K., Ghosh, S., Srinivasan, D. et al. Quantized topological pumping in Floquet synthetic dimensions with a driven dissipative photonic molecule. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02413-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02413-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing