Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nonlinear-optical quantum control of free-electron matter waves

Abstract

Although electrons and photons are the most widely researched elementary particles, their interactions outside of the confines of a material are not yet fully explored. Here, we report the use of nonlinear-optical two-photon transitions for the quantum-coherent control of a free-electron matter wave in free space. We superimpose an electron beam with two crossed laser beams of different photon energies for non-linear Compton scattering. At suitable angle combinations, the electron energy spectrum becomes modulated into discrete energy sidebands with thousands of interference maxima. We explain our observations by the cascaded addition and subtraction of two-photon pairs under three-body conservation of energy and momentum. Calculations reveal that the electron matter wave converts into pulses of few-attosecond duration. These results show the general importance of matter wave coherences in scattering phenomena and provide a way for investigating and creating quantum correlations and entanglement between massive and massless elementary particles without the need for a classical coupling construct.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental concept and results.
Fig. 2: Conservation of energy and momentum and cascaded two-photon transitions.
Fig. 3: Coherent energy broadening in stronger laser fields.
Fig. 4: Spatiotemporal quantum simulations and compression of electron pulses in the time domain.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Reinhardt, O., Mechel, C., Lynch, M. & Kaminer, I. Free-electron qubits. Ann. Phys. 533, 2000254 (2021).

    Article  Google Scholar 

  2. Tsarev, M. V., Ryabov, A. & Baum, P. Free-electron qubits and maximum-contrast attosecond pulses via temporal Talbot revivals. Phys. Rev. Res. 3, 043033 (2021).

    Article  Google Scholar 

  3. Kealhofer, C. et al. All-optical control and metrology of electron pulses. Science 352, 429–433 (2016).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Zhang, D. F. et al. Segmented terahertz electron accelerator and manipulator (STEAM). Nat. Photonics 12, 336 (2018).

    Article  ADS  Google Scholar 

  5. Tauchert, S. R. et al. Polarized phonons carry angular momentum in ultrafast demagnetization. Nature 602, 73–77 (2022).

    Article  ADS  Google Scholar 

  6. García de Abajo, F. J. G. & Di Giulio, V. Optical excitations with electron beams: challenges and opportunities. ACS Photonics 8, 945–974 (2021).

    Article  Google Scholar 

  7. Hayun, A. B. et al. Shaping quantum photonic states using free electrons. Sci. Adv. 7, eabe4270 (2021).

    Article  ADS  Google Scholar 

  8. Kfir, O., Di Giulio, V., García de Abajo, F. J. G. & Ropers, C. Optical coherence transfer mediated by free electrons. Sci. Adv. 7, eabf6380 (2021).

    Article  ADS  Google Scholar 

  9. Karnieli, A., Rivera, N., Arie, A. & Kaminer, I. The coherence of light is fundamentally tied to the quantum coherence of the emitting particle. Sci. Adv. 7, eabf8096 (2021).

    Article  ADS  Google Scholar 

  10. Dahan, R. et al. Imprinting the quantum statistics of photons on free electrons. Science 373, eabj7128 (2021).

    Article  Google Scholar 

  11. Priebe, K. E. et al. Attosecond electron pulse trains and quantum state reconstruction in ultrafast transmission electron microscopy. Nat. Photonics 11, 793–797 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  12. Morimoto, Y. & Baum, P. Diffraction and microscopy with attosecond electron pulse trains. Nat. Phys. 14, 252–256 (2018).

    Article  Google Scholar 

  13. Dahan, R. et al. Resonant phase-matching between a light wave and a free-electron wavefunction. Nat. Phys. 16, 1123–1131 (2020).

    Article  Google Scholar 

  14. Baum, P. & Krausz, F. Capturing atomic-scale carrier dynamics with electrons. Chem. Phys. Lett. 683, 57–61 (2017).

    Article  ADS  Google Scholar 

  15. Di Giulio, V. & García de Abajo, F. J. G. Electron diffraction by vacuum fluctuations. New J. Phys. 22, 103057 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  16. Beierle, P. J., Zhang, L. Y. & Batelaan, H. Experimental test of decoherence theory using electron matter waves. New J. Phys. 20, 113030 (2018).

    Article  ADS  Google Scholar 

  17. Sonnentag, P. & Hasselbach, F. Measurement of decoherence of electron waves and visualization of the quantum–classical transition. Phys. Rev. Lett. 98, 200402 (2007).

    Article  ADS  Google Scholar 

  18. Schattschneider, P. & Loffler, S. Entanglement and decoherence in electron microscopy. Ultramicroscopy 190, 39–44 (2018).

    Article  Google Scholar 

  19. Haroutunian, V. M. & Avetissian, H. K. Analog of Kapitza–Dirac effect. Phys. Lett. A 51, 320–322 (1975).

    Article  ADS  Google Scholar 

  20. Smirnova, O., Freimund, D. L., Batelaan, H. & Ivanov, M. Kapitza-Dirac diffraction without standing waves: diffraction without a grating? Phys. Rev. Lett. 92, 223601 (2004).

    Article  ADS  Google Scholar 

  21. Di Giulio, V. & García de Abajo, F. J. Optical-cavity mode squeezing by free electrons. Nanophotonics 11, 4659–4670 (2022).

    Article  Google Scholar 

  22. Aidelsburger, M., Kirchner, F. O., Krausz, F. & Baum, P. Single-electron pulses for ultrafast diffraction. Proc. Natl Acad. Sci. USA 107, 19714–19719 (2010).

    Article  ADS  Google Scholar 

  23. Miller, R. J. D. Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action. Science 343, 1108–1116 (2014).

    Article  ADS  Google Scholar 

  24. Tsarev, M., Ryabov, A. & Baum, P. Measurement of temporal coherence of free electrons by time-domain electron interferometry. Phys. Rev. Lett. 127, 165501 (2021).

    Article  ADS  Google Scholar 

  25. Kozák, M., Eckstein, T., Schönenberger, N. & Hommelhoff, P. Inelastic ponderomotive scattering of electrons at a high-intensity optical travelling wave in vacuum. Nat. Phys. 14, 121–125 (2018).

    Article  Google Scholar 

  26. Kozák, M., Schönenberger, N. & Hommelhoff, P. Ponderomotive generation and detection of attosecond free-electron pulse trains. Phys. Rev. Lett. 120, 103203 (2018).

    Article  ADS  Google Scholar 

  27. Kapitza, P. L. & Dirac, P. A. M. The reflection of electrons from standing light waves. Proc. Camb. Philos. Soc. 29, 297–300 (1933).

    Article  ADS  MATH  Google Scholar 

  28. Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza–Dirac effect. Nature 413, 142–143 (2001).

    Article  ADS  Google Scholar 

  29. Hilbert, S. A., Uiterwaal, C., Barwick, B., Batelaan, H. & Zewail, A. H. Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl Acad. Sci. USA 106, 10558–10563 (2009).

    Article  ADS  Google Scholar 

  30. Manley, J. M. & Rowe, H. E. Some general properties of nonlinear elements - Part I. general energy relations. Proc. IRE 44, 904–913 (1956).

    Article  Google Scholar 

  31. Feist, A. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

    Article  ADS  Google Scholar 

  32. Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    Article  ADS  Google Scholar 

  33. Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88, 173903 (2002).

    Article  ADS  Google Scholar 

  34. Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007).

    Article  ADS  Google Scholar 

  35. Askar, A. & Cakmak, A. S. Explicit integration method for the time-dependent Schrödinger equation for collision problems. J. Chem. Phys. 68, 2794–2798 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  36. Arutyunyan, V. M. & Avetisyan, G. K. Reflection and capture of a charged particle by a plane electromagnetic wave in a medium. Sov. J. Quantum Electron. 2, 39–41 (1972).

    Article  ADS  Google Scholar 

  37. Ehberger, D., Ryabov, A. & Baum, P. Tilted electron pulses. Phys. Rev. Lett. 121, 094801 (2018).

    Article  ADS  Google Scholar 

  38. Feist, A. et al. Ultrafast transmission electron microscopy using a laser-driven field emitter: femtosecond resolution with a high coherence electron beam. Ultramicroscopy 176, 63–73 (2017).

    Article  Google Scholar 

  39. Kozák, M. All-optical scheme for generation of isolated attosecond electron pulses. Phys. Rev. Lett. 123, 203202 (2019).

    Article  ADS  Google Scholar 

  40. Ossiander, M. et al. Attosecond correlation dynamics. Nat. Phys. 13, 280–285 (2017).

    Article  Google Scholar 

  41. Grundmann, S. et al. Zeptosecond birth time delay in molecular photoionization. Science 370, 339–341 (2020).

    Article  ADS  Google Scholar 

  42. du Rietz, R. et al. Predominant time scales in fission processes in reactions of S, Ti and Ni with W: zeptosecond versus attosecond. Phys. Rev. Lett. 106, 052701 (2011).

    Article  ADS  Google Scholar 

  43. Bocklage, L. et al. Coherent control of collective nuclear quantum states via transient magnons. Sci. Adv. 7, eabc3991 (2021).

    Article  ADS  Google Scholar 

  44. Braun, D. et al. Quantum-enhanced measurements without entanglement. Rev. Mod. Phys. 90, 035006 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  45. Lyons, A. et al. Attosecond-resolution Hong–Ou–Mandel interferometry. Sci. Adv. 4, eaap9416 (2018).

    Article  ADS  Google Scholar 

  46. McGregor, S., Bach, R. & Batelaan, H. Transverse quantum Stern–Gerlach magnets for electrons. New J. Phys. 13, 065018 (2011).

    Article  ADS  Google Scholar 

  47. Schwartz, O. et al. Laser phase plate for transmission electron microscopy. Nat. Methods 16, 1016–1020 (2019).

    Article  Google Scholar 

  48. Hebeisen, C. T. et al. Femtosecond electron pulse characterization using laser ponderomotive scattering. Opt. Lett. 31, 3517–3519 (2006).

    Article  ADS  Google Scholar 

  49. Waldecker, L., Bertoni, R. & Ernstorfer, R. Compact femtosecond electron diffractometer with 100 keV electron bunches approaching the single-electron pulse duration limit. J. Appl. Phys. 117, 044903 (2015).

    Article  ADS  Google Scholar 

  50. Kasmi, L., Kreier, D., Bradler, M., Riedle, E. & Baum, P. Femtosecond single-electron pulses generated by two-photon photoemission close to the work function. New J. Phys. 17, 033008 (2015).

    Article  ADS  Google Scholar 

  51. Kealhofer, C., Lahme, S., Urban, T. & Baum, P. Signal-to-noise in femtosecond electron diffraction. Ultramicroscopy 159, 19–25 (2015).

    Article  Google Scholar 

  52. Kirchner, F. O., Gliserin, A., Krausz, F. & Baum, P. Laser streaking of free electrons at 25 keV. Nat. Photonics 8, 52–57 (2014).

    Article  ADS  Google Scholar 

  53. Morimoto, Y. & Hommelhoff, P. Intracycle interference in the interaction of laser and electron beams. Phys. Rev. Res. 2, 043089 (2020).

    Article  Google Scholar 

  54. Gover, A. & Pan, Y. Dimension-dependent stimulated radiative interaction of a single electron quantum wavepacket. Phys. Lett. A 382, 1550–1555 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Ryabov, A., Thurner, J. W., Nabben, D., Tsarev, M. V. & Baum, P. Attosecond metrology in a continuous-beam transmission electron microscope. Sci. Adv. 6, eabb1393 (2020).

    Article  ADS  Google Scholar 

  56. Mohler, K. J. et al. Ultrafast electron diffraction from nanophotonic waveforms via dynamical Aharonov–Bohm phases. Sci. Adv. 6, eabc8804 (2020).

    Article  ADS  Google Scholar 

  57. Baum, P. On the physics of ultrashort single-electron pulses for time-resolved microscopy and diffraction. Chem. Phys. 423, 55–61 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the German Research Foundation via SFB 1432 and by the European Union’s Horizon 2020 research and innovation programme via Marie Skłodowska-Curie grant 713694.

Author information

Authors and Affiliations

Authors

Contributions

P.B. and M.T. conceived the experiment. J.W.T. and M.T. performed the experiments and analysed the data. M.T. performed the simulations. P.B. and M.T. wrote the manuscript with help of all coauthors.

Corresponding author

Correspondence to Peter Baum.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Theoretical spectrum in comparison to the experiment.

The simulated spectrum (blue) leading to the few-attosecond pulses of Fig. 4 compares well to the measured spectrum (black) as replotted from Fig. 3a. The apparent noise in the simulations are coherent effects. A slight asymmetry in the experiment (energy gain region are more intense than energy loss regions) is related to the energy-sensitivity of the camera’s phosphor screen, a quantity that has not been corrected for in the experiment.

Extended Data Fig. 2 Broadband electron energy spectroscopy from concatenated measurements.

The color curves show the individual electron energy ranges and the color arrows denote the measured energy shifts. Together, these results produce the spectrum of Fig. 3a.

Extended Data Fig. 3 Correction of long-term drifts in the high-resolution sideband spectra of Fig. 3.

The four columns correspond to four different central energies of the magnetic spectrometer (0 eV, 100 eV, 1000 eV and 1500 eV). a, Directly averaged images without drift correction. The sidebands are visible at 0-eV central energy (high electron flux) but not at the other energies the due to fluctuations and drifts. b, Fourier-transform images of the vertically-binned spectrometer images in dependency on image number (top to down, first to last). A spike in the spectrum is present in almost all of the images. c, Spectral amplitude (black curve) and spectral phase (red curve). The peak and the linear phase dependency demonstrate the presence of a trustworthy signal. d, Final spectrometer images after drift correction and averaging. e, Resulting sideband patterns. The arrows indicate the corresponding axes for absolute count rate comparison. The resulting sideband contrast is ~25%, limited by the apparatus function width (compare Fig. 1c).

Source data

Figs. 1–4

Data points as depicted.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsarev, M., Thurner, J.W. & Baum, P. Nonlinear-optical quantum control of free-electron matter waves. Nat. Phys. 19, 1350–1354 (2023). https://doi.org/10.1038/s41567-023-02092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02092-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing