Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry

Abstract

Nonreciprocity means that the transmission of a signal depends on its direction of propagation. Despite vastly different platforms and underlying working principles, the realizations of nonreciprocal transport in linear, time-independent systems rely on Aharonov–Bohm interference among several pathways and require breaking time-reversal symmetry. Here we extend the notion of nonreciprocity to unidirectional bosonic transport in systems with a time-reversal symmetric Hamiltonian by exploiting interference between beamsplitter (excitation-preserving) and two-mode-squeezing (excitation non-preserving) interactions. In contrast to standard nonreciprocity, this unidirectional transport manifests when the mode quadratures are resolved with respect to an external reference phase. Accordingly, we dub this phenomenon ‘quadrature nonreciprocity’. We experimentally demonstrate it in the minimal system of two coupled nanomechanical modes orchestrated by optomechanical interactions. Next, we develop a theoretical framework to characterize the class of networks exhibiting quadrature nonreciprocity based on features of their particle–hole graphs. In addition to unidirectionality, these networks can exhibit an even–odd pairing between collective quadratures, which we confirm experimentally in a four-mode system, and an exponential end-to-end gain in the case of arrays of cavities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quadrature nonreciprocity (qNR) versus standard nonreciprocity (sNR) versus reciprocal transport.
Fig. 2: TRS and qNR.
Fig. 3: qNR transmission in ring networks.
Fig. 4: Steady-state response of a qNR chain.

Similar content being viewed by others

Data availability

The data in this study are available from the Zenodo repository at https://doi.org/10.5281/zenodo.7927433. Source data are provided with this paper.

References

  1. Deák, L. & Fülöp, T. Reciprocity in quantum, electromagnetic and other wave scattering. Ann. Phys. 327, 1050–1077 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  2. Jalas, D. et al. What is—and what is not—an optical isolator. Nat. Photon. 7, 579–582 (2013).

    ADS  Google Scholar 

  3. Caloz, C. et al. Electromagnetic nonreciprocity. Phys. Rev. Appl. 10, 047001 (2018).

    ADS  Google Scholar 

  4. Verhagen, E. & Alù, A. Optomechanical nonreciprocity. Nat. Phys. 13, 922–924 (2017).

    Google Scholar 

  5. Lau, H.-K. & Clerk, A. A. Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing. Nat. Commun. 9, 4320 (2018).

    ADS  Google Scholar 

  6. Ranzani, L. & Aumentado, J. Graph-based analysis of nonreciprocity in coupled-mode systems. New J. Phys. 17, 023024 (2015).

    ADS  MATH  Google Scholar 

  7. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    ADS  MathSciNet  Google Scholar 

  8. Abdo, B., Schackert, F., Hatridge, M., Rigetti, C. & Devoret, M. Josephson amplifier for qubit readout. Appl. Phys. Lett. 99, 162506 (2011).

    ADS  Google Scholar 

  9. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nat. Photon. 3, 91–94 (2009).

    ADS  Google Scholar 

  10. Lira, H., Yu, Z., Fan, S. & Lipson, M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip. Phys. Rev. Lett. 109, 033901 (2012).

    ADS  Google Scholar 

  11. Kamal, A., Clarke, J. & Devoret, M. Noiseless non-reciprocity in a parametric active device. Nat. Phys. 7, 311–315 (2011).

    Google Scholar 

  12. Malz, D. et al. Quantum-limited directional amplifiers with optomechanics. Phys. Rev. Lett. 120, 023601 (2018).

    ADS  Google Scholar 

  13. Metelmann, A. & Clerk, A. A. Nonreciprocal photon transmission and amplification via reservoir engineering. Phys. Rev. X 5, 021025 (2015).

    Google Scholar 

  14. Abdo, B., Kamal, A. & Devoret, M. Nondegenerate three-wave mixing with the Josephson ring modulator. Phys. Rev. B 87, 014508 (2013).

    ADS  Google Scholar 

  15. Sliwa, K. M. et al. Reconfigurable Josephson circulator/directional amplifier. Phys. Rev. X 5, 041020 (2015).

    Google Scholar 

  16. Lecocq, F. et al. Nonreciprocal microwave signal processing with a field-programmable Josephson amplifier. Phys. Rev. Appl. 7, 024028 (2017).

    ADS  Google Scholar 

  17. Kim, J., Kuzyk, M. C., Han, K., Wang, H. & Bahl, G. Non-reciprocal Brillouin scattering induced transparency. Nat. Phys. 11, 275–280 (2015).

    Google Scholar 

  18. Shen, Z. et al. Experimental realization of optomechanically induced non-reciprocity. Nat. Photon. 10, 657–661 (2016).

    ADS  Google Scholar 

  19. Ruesink, F., Miri, M.-A., Alù, A. & Verhagen, E. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun. 7, 13662 (2016).

    ADS  Google Scholar 

  20. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    Google Scholar 

  21. Peterson, G. A. et al. Demonstration of efficient nonreciprocity in a microwave optomechanical circuit. Phys. Rev. X 7, 031001 (2017).

    Google Scholar 

  22. Barzanjeh, S. et al. Mechanical on-chip microwave circulator. Nat. Commun. 8, 953 (2017).

    ADS  Google Scholar 

  23. Bernier, N. R. et al. Nonreciprocal reconfigurable microwave optomechanical circuit. Nat. Commun. 8, 604 (2017).

    ADS  Google Scholar 

  24. Sohn, D. B., Örsel, O. E. & Bahl, G. Electrically driven optical isolation through phonon-mediated photonic Autler–Townes splitting. Nat. Photon. 15, 822–827 (2021).

    ADS  Google Scholar 

  25. Fan, L. et al. An all-silicon passive optical diode. Science 335, 447–450 (2012).

    ADS  Google Scholar 

  26. Wang, Y.-X., Wang, C. & Clerk, A. A. Quantum nonreciprocal interactions via dissipative gauge symmetry. PRX Quantum 4, 010306 (2023).

    ADS  Google Scholar 

  27. Sayrin, C. et al. Nanophotonic optical isolator controlled by the internal state of cold atoms. Phys. Rev. X 5, 041036 (2015).

    Google Scholar 

  28. Buddhiraju, S., Song, A., Papadakis, G. T. & Fan, S. Nonreciprocal metamaterial obeying time-reversal symmetry. Phys. Rev. Lett. 124, 257403 (2020).

    ADS  Google Scholar 

  29. McDonald, A., Pereg-Barnea, T. & Clerk, A. A. Phase-dependent chiral transport and effective non-Hermitian dynamics in a bosonic Kitaev-Majorana chain. Phys. Rev. X 8, 041031 (2018).

    Google Scholar 

  30. Flynn, V. P., Cobanera, E. & Viola, L. Deconstructing effective non-Hermitian dynamics in quadratic bosonic Hamiltonians. New J. Phys. 22, 083004 (2020).

    ADS  MathSciNet  Google Scholar 

  31. Flynn, V. P., Cobanera, E. & Viola, L. Topology by dissipation: Majorana bosons in metastable quadratic Markovian dynamics. Phys. Rev. Lett. 127, 245701 (2021).

    ADS  MathSciNet  Google Scholar 

  32. Wanjura, C. C., Brunelli, M. & Nunnenkamp, A. Topological framework for directional amplification in driven-dissipative cavity arrays. Nat. Commun. 11, 3149 (2020).

    ADS  Google Scholar 

  33. Fan, S., Suh, W. & Joannopoulos, J. D. Temporal coupled-mode theory for the Fano resonance in optical resonators. J. Opt. Soc. Am. A 20, 569–572 (2003).

    ADS  Google Scholar 

  34. Gardiner, C. W. & Collett, M. J. Input and output in damped quantum systems: quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985).

    ADS  MathSciNet  Google Scholar 

  35. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010).

    ADS  MathSciNet  MATH  Google Scholar 

  36. Braginsky, V. B., Vorontsov, Y. I. & Thorne, K. S. Quantum nondemolition measurements. Science 209, 547–557 (1980).

    ADS  Google Scholar 

  37. Clerk, A. A., Marquardt, F. & Jacobs, K. Back-action evasion and squeezing of a mechanical resonator using a cavity detector. New J. Phys. 10, 095010 (2008).

    ADS  Google Scholar 

  38. Brunelli, M., Malz, D. & Nunnenkamp, A. Conditional dynamics of optomechanical two-tone backaction-evading measurements. Phys. Rev. Lett. 123, 093602 (2019).

    ADS  Google Scholar 

  39. Metelmann, A. & Clerk, A. A. Quantum-limited amplification via reservoir engineering. Phys. Rev. Lett. 112, 133904 (2014).

    ADS  Google Scholar 

  40. Chien, T.-C. et al. Multiparametric amplification and qubit measurement with a Kerr-free Josephson ring modulator. Phys. Rev. A 101, 042336 (2020).

    ADS  Google Scholar 

  41. Carmichael, H. J. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273–2276 (1993).

    ADS  Google Scholar 

  42. Gardiner, C. W. Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett. 70, 2269–2272 (1993).

    ADS  Google Scholar 

  43. Mathew, J. P., Pino, J. D. & Verhagen, E. Synthetic gauge fields for phonon transport in a nano-optomechanical system. Nat. Nanotechnol. 15, 198–202 (2020).

    ADS  Google Scholar 

  44. del Pino, J., Slim, J. J. & Verhagen, E. Non-Hermitian chiral phononics through optomechanically induced squeezing. Nature 606, 82–87 (2022).

    ADS  Google Scholar 

  45. Koch, J., Houck, A. A., Hur, K. L. & Girvin, S. M. Time-reversal-symmetry breaking in circuit-QED-based photon lattices. Phys. Rev. A 82, 043811 (2010).

    ADS  Google Scholar 

  46. Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS  Google Scholar 

  47. Porras, D. & Fernández-Lorenzo, S. Topological amplification in photonic lattices. Phys. Rev. Lett. 122, 143901 (2019).

    ADS  Google Scholar 

  48. Gong, Z. et al. Topological phases of non-Hermitian systems. Phys. Rev. X 8, 031079 (2018).

    Google Scholar 

  49. Wang, Y.-X. & Clerk, A. A. Non-Hermitian dynamics without dissipation in quantum systems. Phys. Rev. A 99, 063834 (2019).

    ADS  Google Scholar 

  50. McDonald, A. & Clerk, A. A. Exponentially-enhanced quantum sensing with non-Hermitian lattice dynamics. Nat. Commun. 11, 5382 (2020).

    ADS  Google Scholar 

  51. Barzanjeh, S. et al. Optomechanics for quantum technologies. Nat. Phys. 18, 15–24 (2022).

    Google Scholar 

  52. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  53. Zhang, Z. et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice. Phys. Rev. Lett. 118, 084303 (2017).

    ADS  Google Scholar 

  54. Karg, T. M. et al. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 369, 174–179 (2020).

    ADS  MathSciNet  MATH  Google Scholar 

  55. Youssefi, A. et al. Topological lattices realized in superconducting circuit optomechanics. Nature 612, 666–672 (2022).

    ADS  Google Scholar 

  56. Rossignoli, R. & Kowalski, A. M. Complex modes in unstable quadratic bosonic forms. Phys. Rev. A 72, 032101 (2005).

    ADS  MathSciNet  Google Scholar 

  57. Weaver, M. J. et al. Coherent optomechanical state transfer between disparate mechanical resonators. Nat. Commun. 8, 824 (2017).

    ADS  Google Scholar 

  58. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014).

    ADS  Google Scholar 

  59. Leijssen, R., La Gala, G. R., Freisem, L., Muhonen, J. T. & Verhagen, E. Nonlinear cavity optomechanics with nanomechanical thermal fluctuations. Nat. Commun. 8, 16024 (2017).

    Google Scholar 

  60. Poggio, M., Degen, C. L., Mamin, H. J. & Rugar, D. Feedback cooling of a cantilever’s fundamental mode below 5 mK. Phys. Rev. Lett. 99, 017201 (2007).

    ADS  Google Scholar 

  61. Rossi, M., Mason, D., Chen, J., Tsaturyan, Y. & Schliesser, A. Measurement-based quantum control of mechanical motion. Nature 563, 53–58 (2018).

    ADS  Google Scholar 

  62. Hauer, B. D., Clark, T. J., Kim, P. H., Doolin, C. & Davis, J. P. Dueling dynamical backaction in a cryogenic optomechanical cavity. Phys. Rev. A 99, 053803 (2019).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank A. A. Clerk, D. Malz, A. Alù and S. A. Mann for useful discussions. C.C.W. acknowledges funding received from the Winton Programme for the Physics of Sustainability and EPSRC (EP/R513180/1). J.d.P. acknowledges financial support from the ETH Fellowship programme (grant no. 20-2 FEL-66). M.B. acknowledges funding from the Swiss National Science Foundation (PCEFP2_194268). This work is part of the research programme of the Netherlands Organisation for Scientific Research (NWO). It is supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 732894 (FET-Proactive HOT) and the European Research Council (ERC starting grant no. 759644-TOPP).

Author information

Authors and Affiliations

Authors

Contributions

C.C.W. developed the theoretical framework with J.d.P. and M.B. J.J.S. fabricated the sample, performed the experiments and analysed the data. E.V. and A.N. supervised the project. All authors contributed to the interpretation of the results and writing of the manuscript.

Corresponding authors

Correspondence to Ewold Verhagen or Andreas Nunnenkamp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optomechanical device.

(a) Scanning electron micrograph of a device as used in our experiments. Three suspended beams are defined in the top silicon device layer (thickness 220 nm). The flexural motion of each pair of adjacent beams is coupled to an optical resonance, hosted by a point defect in the sliced photonic crystal defined by the teeth. In the presented experiments, we address only one of the cavities from free-space, at normal incidence, to drive and read out the mechanical motion of a single beam pair. The inset shows a top view, revealing the narrow slit separating the beam pair. More details can be found in ref. 44. (b) Spectrum of thermal fluctuations imprinted on the intensity of a read-out laser reflected off the optical cavity. In this frequency range, four mechanical resonances can be identified, with the corresponding simulated displacement profiles shown above. These mechanical modes serve as the resonators in the presented experiments.

Extended Data Fig. 2 Schematic of the experimental set-up.

A sample holding the sliced nanobeam device is placed in a room-temperature vacuum chamber rotated by 45 relative to the vertical polarization of the incoming light. Spectrally resolved drive and detection lasers are combined in-fibre, launched into free-space, and focused onto the sample, coupling into the nanocavity from normal incidence. In a cross-polarized detection scheme, the horizontal component of the light radiated out from the cavity is transmitted by a polarizing beamsplitter (PBS). Subsequently, a fibre-based tunable bandpass filter (BPF) rejects light at the drive laser frequency and transmits detection laser light onto a fast photodetector (PD2). A high-frequency lock-in amplifier (LIA) serves to analyze (In) the intensity modulations of the drive laser (for calibration) and detection laser, while also driving (Out) the drive laser intensity modulator (IM) through an amplification stage (not shown). In addition, the electronic displacement signal is routed through a digital signal processor (DSP) that optionally generates a feedback signal to modify resonator damping rates. LP, linear polarizer.

Supplementary information

Supplementary Information

Supplementary Text, Supplementary Figs. 1 and 2, Supplementary Equations and Supplementary References.

Source data

Source Data Fig. 1

Figure source data.

Source Data Fig. 2

Figure source data.

Source Data Fig. 3

Figure source data.

Source Data Fig. 4

Figure source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanjura, C.C., Slim, J.J., del Pino, J. et al. Quadrature nonreciprocity in bosonic networks without breaking time-reversal symmetry. Nat. Phys. 19, 1429–1436 (2023). https://doi.org/10.1038/s41567-023-02128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02128-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing