Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Non-classical microwave–optical photon pair generation with a chip-scale transducer

Abstract

Modern computing and communication technologies such as supercomputers and the Internet are based on optically connected networks of microwave-frequency information processors. An analogous architecture has been proposed for quantum networks, using optical photons to distribute entanglement between remote superconducting quantum processors. Here we report a step towards such a network by observing non-classical correlations between photons in an optical link and a superconducting quantum device. We generate these states of light through a spontaneous parametric down-conversion process in a chip-scale piezo-optomechanical transducer, and we measure a microwave–optical cross-correlation exceeding the Cauchy–Schwarz classical bound for thermal states. As further evidence of the non-classical character of the microwave–optical photon pairs, we observe antibunching in the microwave state conditioned on detection of an optical photon. Such a transducer can be readily connected to an independent superconducting qubit module and serve as a key building block for optical quantum networks of microwave-frequency qubits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantum transducer.
Fig. 2: Optical and microwave spectroscopy.
Fig. 3: Transducer noise characterization.
Fig. 4: Microwave–optical cross-correlations.

Similar content being viewed by others

Data availability

Data shown in the main text and Supplementary Information are available on Zenodo50. Source data are provided with this paper.

References

  1. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997).

    Article  ADS  CAS  Google Scholar 

  2. Kimble, H. The quantum internet. Nature 453, 1023 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Briegel, H. J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998).

    Article  ADS  CAS  Google Scholar 

  4. Duan, L.-M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413 EP (2001).

    Article  ADS  Google Scholar 

  5. Cirac, J. I., Ekert, A. K., Huelga, S. F. & Macchiavello, C. Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

    Article  ADS  Google Scholar 

  7. Kómár, P. et al. A quantum network of clocks. Nat. Phys. 10, 582 (2014).

    Article  Google Scholar 

  8. Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Optical interferometry with quantum networks. Phys. Rev. Lett. 123, 070504 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Chen, J.-P. et al. Twin-field quantum key distribution over a 511 km optical fibre linking two distant metropolitan areas. Nat. Photon. 15, 570 (2021).

    Article  ADS  CAS  Google Scholar 

  10. Welte, S. et al. A nondestructive Bell-state measurement on two distant atomic qubits. Nat. Photon. 15, 504 (2021).

    Article  ADS  CAS  Google Scholar 

  11. Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218 (2016).

    Article  CAS  Google Scholar 

  14. Hucul, D. et al. Modular entanglement of atomic qubits using photons and phonons. Nat. Phys. 11, 37 (2015).

    Article  CAS  Google Scholar 

  15. Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369 (2020).

    Article  ADS  Google Scholar 

  17. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Wu, Y. et al. Strong quantum computational advantage using a superconducting quantum processor. Phys. Rev. Lett. 127, 180501 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Han, X., Fu, W., Zou, C.-L., Jiang, L. & Tang, H. X. Microwave-optical quantum frequency conversion. Optica 8, 1050 (2021).

    Article  ADS  Google Scholar 

  20. Delaney, R. D. et al. Superconducting-qubit readout via low-backaction electro-optic transduction. Nature 606, 489 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Fu, W. et al. Cavity electro-optic circuit for microwave-to-optical conversion in the quantum ground state. Phys. Rev. A 103, 053504 (2021).

    Article  ADS  CAS  Google Scholar 

  22. Xu, Y. et al. Bidirectional interconversion of microwave and light with thin-film lithium niobate. Nat. Commun. 12, 4453 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hisatomi, R. et al. Bidirectional conversion between microwave and light via ferromagnetic magnons. Phys. Rev. B 93, 174427 (2016).

    Article  ADS  Google Scholar 

  24. Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Nat. Commun. 11, 3266 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, W. et al. Optically heralded microwave photon addition. Nat. Phys. 19, 1423–1428 (2023).

    Article  CAS  Google Scholar 

  26. Mirhosseini, M., Sipahigil, A., Kalaee, M. & Painter, O. J. Superconducting qubit to optical photon transduction. Nature 588, 599–603 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Zhong, C., Han, X., Tang, H. X. & Jiang, L. Entanglement of microwave-optical modes in a strongly coupled electro-optomechanical system. Phys. Rev. A 101, 032345 (2020).

    Article  ADS  CAS  Google Scholar 

  28. Clauser, J. F. Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect. Phys. Rev. D. 9, 853 (1974).

    Article  ADS  CAS  Google Scholar 

  29. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Sahu, R. et al. Entangling microwaves with light. Science 380, 718 (2023).

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  32. Lobo, R. P. S. M. et al. Photoinduced time-resolved electrodynamics of superconducting metals and alloys. Phys. Rev. B 72, 024510 (2005).

    Article  ADS  Google Scholar 

  33. Aspelmeyer, M., Kippenberg, T. J. & Marquardt, F. Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014).

    Article  ADS  Google Scholar 

  34. Weaver, M. J. et al. An integrated microwave-to-optics interface for scalable quantum computing, Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01515-y (2023).

  35. Jiang, W. et al. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun. 11, 1166 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhong, C. et al. Proposal for heralded generation and detection of entangled microwave–optical-photon pairs. Phys. Rev. Lett. 124, 010511 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zhong, C., Han, X. & Jiang, L. Microwave and optical entanglement for quantum transduction with electro-optomechanics. Phys. Rev. Appl. 18, 054061 (2022).

    Article  ADS  CAS  Google Scholar 

  38. Zmuidzinas, J. Superconducting microresonators: physics and applications. Annu. Rev. Condens. Matter Phys. 3, 169 (2012).

    Article  CAS  Google Scholar 

  39. Xu, M., Han, X., Fu, W., Zou, C.-L. & Tang, H. X. Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance. Appl. Phys. Lett. 114, 192601 (2019).

    Article  ADS  Google Scholar 

  40. Clerk, A. A., Devoret, M. H., Girvin, S. M., Marquardt, F. & Schoelkopf, R. J. Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  41. Caves, C. M. Quantum limits on noise in linear amplifiers. Phys. Rev. D. 26, 1817 (1982).

    Article  ADS  Google Scholar 

  42. Eichler, C. et al. Experimental state tomography of itinerant single microwave photons. Phys. Rev. Lett. 106, 220503 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Meenehan, S. M. et al. Pulsed excitation dynamics of an optomechanical crystal resonator near its quantum ground state of motion. Phys. Rev. X 5, 041002 (2015).

    Google Scholar 

  44. MacCabe, G. S. et al. Nano-acoustic resonator with ultralong phonon lifetime. Science 370, 840–843 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Kurpiers, P. et al. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature 558, 264 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Krastanov, S. et al. Optically heralded entanglement of superconducting systems in quantum networks. Phys. Rev. Lett. 127, 040503 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Chiappina, P. et al. Design of an ultra-low mode volume piezo-optomechanical quantum transducer. Opt. Express 31, 22914 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Zhao, H., Bozkurt, A. & Mirhosseini, M. Electro-optic transduction in silicon via gigahertz-frequency nanomechanics. Optica 10, 790 (2023).

    Article  ADS  CAS  Google Scholar 

  49. Ren, H. et al. Two-dimensional optomechanical crystal cavity with high quantum cooperativity. Nat. Commun. 11, 3373 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Meesala, S. et al. Publication date: Feb 12th, 2024Data for ‘Non-classical microwave–optical photon pair generation with a chip-scale transducer’. Zenodo https://doi.org/10.5281/zenodo.10456905 (2024).

Download references

Acknowledgements

We thank M. Mirhosseini, M. Kalaee, A. Sipahigil and J. Banker for contributions in the early stages of this work, E. Kim, A. Butler, G. Kim, S. Sonar, U. Hatipoglu and J. Rochman for helpful discussions and B. Baker and M. McCoy for experimental support. We thank MIT Lincoln Laboratories for providing the travelling-wave parametric amplifier used in the microwave readout chain in our experimental set-up. NbN deposition during the fabrication process was performed at the Jet Propulsion Laboratory. This work was supported by the ARO/LPS Cross Quantum Technology Systems program (grant W911NF-18-1-0103), the US Department of Energy Office of Science National Quantum Information Science Research Centers (Q-NEXT, award DE-AC02-06CH11357), the Institute for Quantum Information and Matter (IQIM) and the NSF Physics Frontiers Center (grant PHY-1125565) with support from the Gordon and Betty Moore Foundation, the Kavli Nanoscience Institute at Caltech and the AWS Center for Quantum Computing. L.J. acknowledges support from the AFRL (FA8649-21-P-0781), NSF (ERC-1941583, OMA-2137642) and the Packard Foundation (2020-71479). S.M. acknowledges support from the IQIM Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

S.M., S.W., D.L. and O.P. came up with the concept, S.M., S.W. and D.L. planned the experiment. S.M., S.W., D.L. and P.C. designed the device. S.M. and S.W. performed device fabrication with help from A.D.B. and M.D.S. for NbN deposition. M.D.S. provided the single photon detector used in the experiments. S.M., S.W. and D.L. performed the measurements and analysed the data. S.M., D.L., C.Z. and L.J. developed the theoretical model. O.P. supervised the project. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Oskar Painter.

Ethics declarations

Competing interests

O.P. is currently employed by Amazon Web Services (AWS) as Director of their quantum hardware program. AWS provided partial funding support for this work through a sponsored research grant.

Peer review

Peer review information

Nature Physics thanks Rishabh Sahu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–17, Figs. 1–13, Tables 1–5 and References.

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 2

Transducer spectroscopy data.

Source Data Fig. 3

Transducer noise characterization data.

Source Data Fig. 4

Microwave–optical cross-correlations data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meesala, S., Wood, S., Lake, D. et al. Non-classical microwave–optical photon pair generation with a chip-scale transducer. Nat. Phys. (2024). https://doi.org/10.1038/s41567-024-02409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-024-02409-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing