Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Probing many-body correlations using quantum-cascade correlation spectroscopy

Abstract

In quantum optics, the radiative quantum cascade—the consecutive emission of photons from a ladder of energy levels—is of fundamental importance. Two-photon cascaded emission has been instrumental in pioneering experiments to test Bell inequalities and generate entangled photon pairs. More recently, correlated and entangled photon pairs in the visible and microwave domains have been demonstrated using solid-state systems. These experiments rely on the nonlinear nature of the underlying energy ladder, which enables the direct excitation and probing of specific single-photon transitions. Here we use exciton–polaritons to explore the cascaded emission of photons in the regime where individual transitions of the ladder are not resolved. We excite a polariton quantum cascade by off-resonant laser excitation and probe the emitted luminescence using a combination of spectral filtering and correlation spectroscopy. The measured photon–photon correlations exhibit a strong dependence on the polariton energy and therefore on the underlying polaritonic interaction strength, with clear signatures of many-body Feshbach resonances. Our experiment establishes photon cascade correlation spectroscopy as a highly sensitive tool to study the underlying quantum properties of novel semiconductor materials and many-body quantum phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PQC and experimental characterization.
Fig. 2: Correlation spectroscopy as a function of filter detuning.
Fig. 3: Signatures of quantum many-body correlations between polaritons.

Similar content being viewed by others

Data availability

All the data that support the plots within this Article and the Supplementary Information and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

All the codes that support the plots within this Article and the Supplementary Information and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299 (2013).

    Article  ADS  Google Scholar 

  2. Amo, A. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  CAS  Google Scholar 

  3. Amo, A. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Nardin, G. Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid. Nat. Phys. 7, 635–641 (2011).

    Article  CAS  Google Scholar 

  5. Karr, J. P. H., Baas, A., Houdré, R. & Giacobino, E. Squeezing in semiconductor microcavities in the strong-coupling regime. Phys. Rev. A 69, 031802 (2004).

    Article  ADS  Google Scholar 

  6. Boulier, T. Polariton-generated intensity squeezing in semiconductor micropillars. Nat. Commun. 5, 3260 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Kuriakose, T. Few-photon all-optical phase rotation in a quantum-well micropillar cavity. Nat. Photon. 16, 566–569 (2022).

    Article  CAS  ADS  Google Scholar 

  8. Muñoz-Matutano, G. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article  PubMed  Google Scholar 

  9. Delteil, A. Towards polariton blockade of confined exciton-polaritons. Nat. Mater. 18, 219–222 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Takemura, N., Trebaol, S., Wouters, M., Portella-Oberli, M. T. & Deveaud, B. Polaritonic Feshbach resonance. Nat. Phys. 10, 500–504 (2014).

    Article  CAS  Google Scholar 

  11. Turner, D. B. & Nelson, K. A. Coherent measurements of high-order electronic correlations in quantum wells. Nature 466, 1089–1092 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Wen, P., Christmann, G., Baumberg, J. J. & Nelson, K. A. Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities. New J. Phys. 15, 025005 (2013).

    Article  CAS  ADS  Google Scholar 

  13. Besga, B. Polariton boxes in a tunable fiber cavity. Phys. Rev. Appl. 3, 014008 (2015).

    Article  CAS  ADS  Google Scholar 

  14. Fink, T., Schade, A., Höfling, S., Schneider, C. & Imamoğlu, A. Signatures of a dissipative phase transition in photon correlation measurements. Nat. Phys. 14, 365–369 (2018).

    Article  CAS  Google Scholar 

  15. Scully, M. O. & Lamb, Jr. W. E. Quantum theory of an optical maser. I. General theory. Phys. Rev. 159, 208 (1967).

    Article  CAS  ADS  Google Scholar 

  16. Klaas, M. Photon-number-resolved measurement of an exciton-polariton condensate. Phys. Rev. Lett. 121, 047401 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Silva, B. The colored Hanbury Brown-Twiss effect. Sci. Rep. 6, 2045–2322 (2016).

    Article  Google Scholar 

  18. Verger, A., Ciuti, C. & Carusotto, I. Polariton quantum blockade in a photonic dot. Phys. Rev. B 73, 193306 (2006).

    Article  ADS  Google Scholar 

  19. Liew, T. C. H. & Savona, V. Single photons from coupled quantum modes. Phys. Rev. Lett. 104, 183601 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Vaneph, C. Observation of the unconventional photon blockade in the microwave domain. Phys. Rev. Lett. 121, 043602 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Snijders, H. J. Observation of the unconventional photon blockade. Phys. Rev. Lett. 121, 043601 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  22. Hanschke, L. Origin of antibunching in resonance fluorescence. Phys. Rev. Lett. 125, 170402 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Phillips, C. L. Photon statistics of filtered resonance fluorescence. Phys. Rev. Lett. 125, 043603 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Foster, A. P. Tunable photon statistics exploiting the Fano effect in a waveguide. Phys. Rev. Lett. 122, 173603 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Casalengua, E. Z., López Carre no, J. C., Laussy, F. P. & del Valle, E. Tuning photon statistics with coherent fields. Phys. Rev. A 101, 063824 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  26. Takemura, N. Spin anisotropic interactions of lower polaritons in the vicinity of polaritonic Feshbach resonance. Phys. Rev. B 95, 205303 (2017).

    Article  ADS  Google Scholar 

  27. Levinsen, J., Marchetti, F., Keeling, J. & Parish, M. Spectroscopic signatures of quantum many-body correlations in polariton microcavities. Phys. Rev. Lett. 123, 266401 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Bleu, O., Levinsen, J. & Parish, M. Interplay between polarization and quantum correlations of confined polaritons. Phys. Rev. B 104, 035304 (2021).

    Article  CAS  ADS  Google Scholar 

  29. Christensen, E. R. et al. Microscopic theory of cavity-enhanced interactions of dipolaritons. Preprint at https://arxiv.org/abs/2212.02597 (2022).

  30. Shimazaki, Y. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Smoleński, T. Signatures of Wigner crystal of electrons in a monolayer semiconductor. Nature 595, 53–57 (2021).

    Article  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank G. M. Matutano and A. Wood for early experimental work, and A. Auffeves for early contributions towards the theoretical modelling. We also thank D. D. Bernardis for discussions. We acknowledge financial support from the Australian Research Council Centre of Excellence for Engineered Quantum Systems EQUS (CE170100009). I.C. acknowledges financial support from the Provincia Autonoma di Trento, from the Q@TN initiative and from PNRR MUR project PE0000023-NQSTI. C2N acknowledges support from the Paris Ile-de-France Region in the framework of DIM SIRTEQ, the French RENATECH network, the H2020-FETFLAG project PhoQus (820392), the QUANTERA project Interpol (ANR-QUAN-0003-05) and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (project ARQADIA, grant agreement no. 949730). M.R. acknowledges support from the Centre for Quantum Technologies’s Exploratory Initiative program.

Author information

Authors and Affiliations

Authors

Contributions

L.S. built the experimental setup, performed the experiments and analysed the data. C.E. and L.S. realized the theoretical calculations and numerical simulations, with the help of M.J. and M.R. S.R. and A.L. contributed to the design of the sample structure and M.M. and A.L. grew the sample by molecular-beam epitaxy. J.B., S.R. and I.C. participated in the scientific discussions to finalize the work. L.S., C.E., M.R. and T.V. wrote the manuscript, with varying contributions from all authors. L.S., M.R. and T.V. conceived the idea for the experiment. M.R. and T.V. supervised the project.

Corresponding author

Correspondence to Thomas Volz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scarpelli, L., Elouard, C., Johnsson, M. et al. Probing many-body correlations using quantum-cascade correlation spectroscopy. Nat. Phys. 20, 214–218 (2024). https://doi.org/10.1038/s41567-023-02322-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02322-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing