Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental super-Heisenberg quantum metrology with indefinite gate order

Abstract

The precision of quantum metrology is widely believed to be restricted by the Heisenberg limit, corresponding to a root mean square error that is inversely proportional to the number of independent processes probed in an experiment, N. In the past, some proposals have challenged this belief, for example, using nonlinear interactions among the probes. However, these proposals turned out to still obey the Heisenberg limit with respect to other relevant resources, such as the total energy of the probes. Here we present a photonic implementation of a quantum metrology protocol surpassing the Heisenberg limit by probing two groups of independent processes in a superposition of two alternative causal orders. Each process creates a phase-space displacement, and our setup is able to estimate a geometric phase associated with two sets of N displacements with an error that falls quadratically with N. Our results only require a single-photon probe with an initial energy that is independent of N. Using a superposition of causal orders outperforms every setup where the displacements are probed in a definite order. Our experiment features the demonstration of indefinite causal order in a continuous-variable system, and opens up the experimental investigation of quantum metrology setups boosted by indefinite causal order.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geometric phase associated with two sets of phase-space displacements.
Fig. 2: Experimental setup for coherently controlling gate orders in a continuous-variable photonic system.
Fig. 3: P for varying N.
Fig. 4: Super-Heisenberg scaling of the RMSE of A.
Fig. 5: Scaling of the total phase against N.

Similar content being viewed by others

Data availability

The data that support the findings of this study are presented in the article and Supplementary Information, and are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Google Scholar 

  2. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006).

    MathSciNet  ADS  Google Scholar 

  3. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nat. Photon. 5, 222–229 (2011).

    ADS  Google Scholar 

  4. Bollinger, J. J., Itano, W. M., Wineland, D. J. & Heinzen, D. J. Optimal frequency measurements with maximally correlated states. Phys. Rev. A 54, R4649 (1996).

    ADS  Google Scholar 

  5. Walther, P. et al. De Broglie wavelength of a non-local four-photon state. Nature 429, 158–161 (2004).

    ADS  Google Scholar 

  6. Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    MathSciNet  MATH  ADS  Google Scholar 

  7. Chen, G. et al. Heisenberg-scaling measurement of the single-photon Kerr non-linearity using mixed states. Nat. Commun. 9, 93 (2018).

    ADS  Google Scholar 

  8. Chen, G. et al. Achieving Heisenberg-scaling precision with projective measurement on single photons. Phys. Rev. Lett. 121, 060506 (2018).

    ADS  Google Scholar 

  9. Anisimov, P. M. et al. Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit. Phys. Rev. Lett. 104, 103602 (2010).

    ADS  Google Scholar 

  10. Beltrán, J. & Luis, A. Breaking the Heisenberg limit with inefficient detectors. Phys. Rev. A 72, 045801 (2005).

    ADS  Google Scholar 

  11. Boixo, S., Flammia, S. T., Caves, C. M. & Geremia, J. M. Generalized limits for single-parameter quantum estimation. Phys. Rev. Lett. 98, 090401 (2007).

    ADS  Google Scholar 

  12. Roy, S. & Braunstein, S. L. Exponentially enhanced quantum metrology. Phys. Rev. Lett. 100, 220501 (2008).

    ADS  Google Scholar 

  13. Choi, S. & Sundaram, B. Bose-Einstein condensate as a nonlinear Ramsey interferometer operating beyond the Heisenberg limit. Phys. Rev. A 77, 053613 (2008).

    ADS  Google Scholar 

  14. Zwierz, M., Pérez-Delgado, C. A. & Kok, P. General optimality of the Heisenberg limit for quantum metrology. Phys. Rev. Lett. 105, 180402 (2010).

    ADS  Google Scholar 

  15. Napolitano, M. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011).

    ADS  Google Scholar 

  16. Yang, Y. Memory effects in quantum metrology. Phys. Rev. Lett. 123, 110501 (2019).

    MathSciNet  ADS  Google Scholar 

  17. Zwierz, M., Pérez-Delgado, C. A. & Kok, P. Ultimate limits to quantum metrology and the meaning of the Heisenberg limit. Phys. Rev. A 85, 042112 (2012).

    ADS  Google Scholar 

  18. Berry, D. W., Hall, M. J., Zwierz, M. & Wiseman, H. M. Optimal Heisenberg-style bounds for the average performance of arbitrary phase estimates. Phys. Rev. A 86, 053813 (2012).

    ADS  Google Scholar 

  19. Hall, M. J. & Wiseman, H. M. Does nonlinear metrology offer improved resolution? Answers from quantum information theory. Phys. Rev. X 2, 041006 (2012).

    Google Scholar 

  20. Zhao, X., Yang, Y. & Chiribella, G. Quantum metrology with indefinite causal order. Phys. Rev. Lett. 124, 190503 (2020).

    MathSciNet  ADS  Google Scholar 

  21. Chiribella, G., D’Ariano, G., Perinotti, P. & Valiron, B. Beyond quantum computers. Preprint at https://arxiv.org/abs/0912.0195v1 (2009).

  22. Chiribella, G., D’Ariano, G. M., Perinotti, P. & Valiron, B. Quantum computations without definite causal structure. Phys. Rev. A 88, 022318 (2013).

    ADS  Google Scholar 

  23. Hardy, L. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. J. Phys. A 40, 3081 (2007).

    MathSciNet  MATH  ADS  Google Scholar 

  24. Oreshkov, O., Costa, F. & Brukner, Č. Quantum correlations with no causal order. Nat. Commun. 3, 1092 (2012).

    ADS  Google Scholar 

  25. Chiribella, G. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A 86, 040301(R) (2012).

    ADS  Google Scholar 

  26. Araújo, M., Costa, F. & Brukner, Č. Computational advantage from quantum-controlled ordering of gates. Phys. Rev. Lett. 113, 250402 (2014).

    ADS  Google Scholar 

  27. Guérin, P. A., Feix, A., Araújo, M. & Brukner, Č. Exponential communication complexity advantage from quantum superposition of the direction of communication. Phys. Rev. Lett. 117, 100502 (2016).

    ADS  Google Scholar 

  28. Ebler, D., Salek, S. & Chiribella, G. Enhanced communication with the assistance of indefinite causal order. Phys. Rev. Lett. 120, 120502 (2018).

    ADS  Google Scholar 

  29. Felce, D. & Vedral, V. Quantum refrigeration with indefinite causal order. Phys. Rev. Lett. 125, 070603 (2020).

    MathSciNet  ADS  Google Scholar 

  30. Frey, M. Indefinite causal order aids quantum depolarizing channel identification. Quantum Inf. Process. 18, 96 (2019).

    MATH  ADS  Google Scholar 

  31. Mukhopadhyay, C., Gupta, M. K. & Pati, A. K. Superposition of causal order as a metrological resource for quantum thermometry. Preprint at https://arxiv.org/abs/1812.07508 (2018).

  32. Chapeau-Blondeau, F. Noisy quantum metrology with the assistance of indefinite causal order. Phys. Rev. A 103, 032615 (2021).

    MathSciNet  ADS  Google Scholar 

  33. Procopio, L. M. et al. Experimental superposition of orders of quantum gates. Nat. Commun. 6, 7913 (2015).

    ADS  Google Scholar 

  34. Rubino, G. et al. Experimental verification of an indefinite causal order. Sci. Adv. 3, e1602589 (2017).

    ADS  Google Scholar 

  35. Goswami, K. et al. Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018).

    ADS  Google Scholar 

  36. Wei, K. et al. Experimental quantum switching for exponentially superior quantum communication complexity. Phys. Rev. Lett. 122, 120504 (2019).

    ADS  Google Scholar 

  37. Goswami, K., Cao, Y., Paz-Silva, G., Romero, J. & White, A. Increasing communication capacity via superposition of order. Phys. Rev. Research 2, 033292 (2020).

    ADS  Google Scholar 

  38. Taddei, M. M. et al. Computational advantage from the quantum superposition of multiple temporal orders of photonic gates. PRX Quantum 2, 010320 (2021).

    Google Scholar 

  39. Guo, Y. et al. Experimental transmission of quantum information using a superposition of causal orders. Phys. Rev. Lett. 124, 030502 (2020).

    ADS  Google Scholar 

  40. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485 (1959).

    MathSciNet  MATH  ADS  Google Scholar 

  41. Berry, M. V. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    MathSciNet  MATH  ADS  Google Scholar 

  42. Garay, L. J. Quantum gravity and minimum length. Int. J. Mod. Phys. A 10, 145–165 (1995).

    ADS  Google Scholar 

  43. Szabo, R. J. Quantum field theory on noncommutative spaces. Phys. Rep. 378, 207–299 (2003).

    MathSciNet  MATH  ADS  Google Scholar 

  44. Pikovski, I., Vanner, M. R., Aspelmeyer, M., Kim, M. & Brukner, Č. Probing Planck-scale physics with quantum optics. Nat. Phys. 8, 393–397 (2012).

    Google Scholar 

  45. Kempf, A., Mangano, G. & Mann, R. B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995).

    MathSciNet  ADS  Google Scholar 

  46. Aguilar, G., Piera, R., Saldanha, P., de Matos Filho, R. & Walborn, S. Robust interferometric sensing using two-photon interference. Phys. Rev. Applied 14, 024028 (2020).

    ADS  Google Scholar 

  47. Demkowicz-Dobrzański, R., Kolodyński, J. & Guţă, M. The elusive Heisenberg limit in quantum enhanced metrology. Nat. Commun. 3, 1063 (2012).

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Innovation Program for Quantum Science and Technology (no. 2021ZD0301200), National Natural Science Foundation of China (grant nos. 12122410, 92065107, 11874344, 61835004, 11821404), Anhui Initiative in Quantum Information Technologies (AHY060300), the Fundamental Research Funds for the Central Universities (grant nos. WK2030000038, WK2470000034), the Hong Kong Research Grant Council through grant 17300918 and through the Senior Research Fellowship Scheme SRFS2021-7S02, the Croucher Foundation, and the ID No. 62312 Grant from the John Templeton Foundation, as part of The Quantum Information Structure of Spacetime Project (QISS, https://www.qiss.fr/). Research at the Perimeter Institute is supported by the Government of Canada through the Department of Innovation, Science and Economic Development, Canada, and by the Province of Ontario through the Ministry of Research, Innovation and Science. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.Y., X.Z., Y.Y. and G. Chiribella proposed the framework of the theory and made the calculations. P.Y., W.-H.Z., G.-C.L. and G. Chen planned and designed the experiment. P.Y. and G. Chen carried out the experiment assisted by B.-H.L., J.-S.X., Y.-J.H. and Y.G. P.Y., G. Chen, X.Z., Y.Y. and G. Chiribella analysed the experimental results and wrote the manuscript. G.-C.G., C.-F.L. and G. Chiribella supervised the project. All the authors discussed the experimental procedures and results.

Corresponding authors

Correspondence to Giulio Chiribella, Geng Chen or Chuan-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Jonatan Brask and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2 and Fig. 1.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, P., Zhao, X., Yang, Y. et al. Experimental super-Heisenberg quantum metrology with indefinite gate order. Nat. Phys. 19, 1122–1127 (2023). https://doi.org/10.1038/s41567-023-02046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-023-02046-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing