Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship

Key Points

  • MicroRNAs (miRNAs) function as 21–24-nucleotide-long guides that regulate the expression of mRNAs containing complementary sequences.

  • Although plant miRNAs typically base-pair perfectly to target sites, animal miRNAs form imperfect duplexes with target sequences, complicating the ability to predict direct targets.

  • Numerous computational and experimental methods have been developed for studying miRNA target recognition and regulation.

  • In plants and animals, miRNAs usually repress target expression by inducing mRNA deadenylation and degradation or by inhibiting translation.

  • Many factors, including target site context, RNA-binding proteins and modifying enzymes, influence the ability of the miRNA complex to bind and regulate specific targets.

  • Base pairing between an miRNA and its target can influence the stability of the miRNA, resulting in increased miRNA levels in some cases and stimulated degradation in others.

  • Coding and non-coding RNAs can function as competing endogenous RNAs (ceRNAs) that bind miRNAs, sequestering them from binding and regulating other RNAs.

  • miRNA 'sponges' have been engineered to titrate specific miRNAs to study their functions in vivo.

  • The new understanding that miRNAs can both regulate and be regulated by target interactions raises many questions regarding the definition of a miRNA target and the functional outcome of miRNA targeting in vivo.

Abstract

MicroRNAs (miRNAs) have emerged as key gene regulators in diverse biological pathways. These small non-coding RNAs bind to target sequences in mRNAs, typically resulting in repressed gene expression. Several methods are now available for identifying miRNA target sites, but the mere presence of an miRNA-binding site is insufficient for predicting target regulation. Regulation of targets by miRNAs is subject to various levels of control, and recent developments have presented a new twist; targets can reciprocally control the level and function of miRNAs. This mutual regulation of miRNAs and target genes is challenging our understanding of the gene-regulatory role of miRNAs in vivo and has important implications for the use of these RNAs in therapeutic settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miRNA biogenesis.
Figure 2: Examples of functional miRNA target sites.
Figure 3: Mechanisms of target regulation by miRNAs.
Figure 4: Regulation of miRNA-targeting efficiency.
Figure 5: Regulation of miRNA stability and function by target interactions.

Similar content being viewed by others

References

  1. Kozomara, A. & Griffiths-Jones, S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157 (2011).

    CAS  PubMed  Google Scholar 

  2. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rigoutsos, I. New tricks for animal microRNAs: targeting of amino acid coding regions at conserved and nonconserved sites. Cancer Res. 69, 3245–3248 (2009).

    CAS  PubMed  Google Scholar 

  4. Sayed, D. & Abdellatif, M. MicroRNAs in development and disease. Physiol. Rev. 91, 827–887 (2011).

    CAS  PubMed  Google Scholar 

  5. Jackson, A. & Linsley, P. S. The therapeutic potential of microRNA modulation. Discov. Med. 9, 311–318 (2010).

    PubMed  Google Scholar 

  6. Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nature Rev. Genet. 11, 597–610 (2010).

    CAS  PubMed  Google Scholar 

  7. Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nature Rev. Genet. 12, 99–110 (2011).

    CAS  PubMed  Google Scholar 

  8. Chen, X. Small RNAs and their roles in plant development. Ann. Rev. Cell Dev. Biol. 25, 21–44 (2009).

    Google Scholar 

  9. Yu, B. & Wang, H. Translational inhibition by microRNAs in plants. Prog. Mol. Subcell. Biol. 50, 41–57 (2010).

    CAS  PubMed  Google Scholar 

  10. Addo-Quaye, C., Eshoo, T. W., Bartel, D. P. & Axtell, M. J. Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. German, M. A. et al. Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nature Biotech. 26, 941–946 (2008).

    CAS  Google Scholar 

  12. Llave, C., Xie, Z., Kasschau, K. D. & Carrington, J. C. Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    CAS  PubMed  Google Scholar 

  13. Dai, X., Zhuang, Z. & Zhao, P. X. Computational analysis of miRNA targets in plants: current status and challenges. Brief. Bioinf. 12, 115–121 (2011).

    CAS  Google Scholar 

  14. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    CAS  PubMed  Google Scholar 

  15. Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Reinhart, B. J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    CAS  PubMed  Google Scholar 

  17. Slack, F. J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    CAS  PubMed  Google Scholar 

  18. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tay, Y., Zhang, J., Thomson, A. M., Lim, B. & Rigoutsos, I. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455, 1124–1128 (2008).

    CAS  PubMed  Google Scholar 

  21. Thomson, D. W., Bracken, C. P. & Goodall, G. J. Experimental strategies for microRNA target identification. Nucleic Acids Res. 39, 6845–6853 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Min, H. & Yoon, S. Got target? Computational methods for microRNA target prediction and their extension. Experimental Mol. Med. 42, 233–244 (2010).

    CAS  Google Scholar 

  23. Chi, S. W., Zang, J. B., Mele, A. & Darnell, R. B. Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460, 479–486 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leung, A. K. et al. Genome-wide identification of Ago2 binding sites from mouse embryonic stem cells with and without mature microRNAs. Nature Struct. Mol. Biol. 18, 237–244 (2011).

    CAS  Google Scholar 

  26. Zisoulis, D. G. et al. Comprehensive discovery of endogenous Argonaute binding sites in Caenorhabditis elegans. Nature Struct. Mol. Biol. 17, 173–179 (2010). References 23–26 report genome-wide analyses of Argonaute-binding sites in endogenous RNAs through CLIP experiments.

    CAS  Google Scholar 

  27. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  PubMed  Google Scholar 

  29. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  PubMed  Google Scholar 

  30. Behm-Ansmant, I. et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20, 1885–1898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Braun, J. E., Huntzinger, E., Fauser, M. & Izaurralde, E. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44, 120–133 (2011).

    CAS  PubMed  Google Scholar 

  32. Chekulaeva, M. et al. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nature Struct. Mol. Biol. 18, 1218–1226 (2011).

    CAS  Google Scholar 

  33. Fabian, M. R. et al. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nature Struct. Mol. Biol. 18, 1211–1217 (2011).

    CAS  Google Scholar 

  34. Giraldez, A. J. et al. Zebrafish miR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    CAS  PubMed  Google Scholar 

  35. Wu, L., Fan, J. & Belasco, J. G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl Acad. Sci. USA 103, 4034–4039 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Humphreys, D. T., Westman, B. J., Martin, D. I. & Preiss, T. MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc. Natl Acad. Sci. USA 102, 16961–6 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Maroney, P. A., Yu, Y., Fisher, J. & Nilsen, T. W. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nature Struct. Mol. Biol. 13, 1102–1107 (2006).

    CAS  Google Scholar 

  38. Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol. 13, 1108–1114 (2006).

    CAS  Google Scholar 

  39. Olsen, P. H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    CAS  PubMed  Google Scholar 

  40. Petersen, C. P., Bordeleau, M. E., Pelletier, J. & Sharp, P. A. Short RNAs repress translation after initiation in mammalian cells. Mol. Cell 21, 533–542 (2006).

    CAS  PubMed  Google Scholar 

  41. Pillai, R. S. et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576 (2005).

    CAS  PubMed  Google Scholar 

  42. Seggerson, K., Tang, L. & Moss, E. G. Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. Dev. Biol. 243, 215–225 (2002).

    CAS  PubMed  Google Scholar 

  43. Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460–471 (2008).

    PubMed  Google Scholar 

  44. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007).

    CAS  PubMed  Google Scholar 

  45. Mortensen, R. D., Serra, M., Steitz, J. A. & Vasudevan, S. Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc. Natl Acad. Sci. USA 108, 8281–8286 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu, E. et al. Pervasive and cooperative deadenylation of 3′UTRs by embryonic microRNA families. Mol. Cell 40, 558–570 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hendrickson, D. G. et al. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol. 7, e1000238 (2009).

    PubMed  PubMed Central  Google Scholar 

  48. Ingolia, N. T., Ghaemmaghami, S., Newman, J. R. & Weissman, J. S. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324, 218–223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Guo, H., Ingolia, N. T., Weissman, J. S. & Bartel, D. P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010). References 48 and 49 describe the development and use of ribosome profiling experiments to study the mechanism of miRNA target regulation, leading to the conclusion that mRNA destabilization largely accounts for repression by the miRNA pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nature Struct. Mol. Biol. 16, 144–150 (2009).

    CAS  Google Scholar 

  53. Fang, Z. & Rajewsky, N. The impact of miRNA target sites in coding sequences and in 3′UTRs. PLoS ONE 6, e18067 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Broderick, J. A., Salomon, W. E., Ryder, S. P., Aronin, N. & Zamore, P. D. Argonaute protein identity and pairing geometry determine cooperativity in mammalian RNA silencing. RNA 17, 1858–1869 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Saetrom, P. et al. Distance constraints between microRNA target sites dictate efficacy and cooperativity. Nucleic Acids Res. 35, 2333–2342 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Didiano, D. & Hobert, O. Molecular architecture of a miRNA-regulated 3′ UTR. RNA 14, 1297–1317 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Meisner, N. C. & Filipowicz, W. Properties of the regulatory RNA-binding protein HuR and its role in controlling miRNA repression. Adv. Exp. Med. Biol. 700, 106–123 (2010).

    CAS  PubMed  Google Scholar 

  58. Bhattacharyya, S. N., Habermacher, R., Martine, U., Closs, E. I. & Filipowicz, W. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125, 1111–1124 (2006). This paper provides the first demonstration that an RNA-binding protein can reverse the repressive effect of a miRNA on a specific target.

    CAS  PubMed  Google Scholar 

  59. Lebedeva, S. et al. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell 43, 340–352 (2011).

    CAS  PubMed  Google Scholar 

  60. Mukherjee, N. et al. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol. Cell 43, 327–339 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    CAS  PubMed  Google Scholar 

  63. Mishima, Y. et al. Differential regulation of germline mRNAs in soma and germ cells by zebrafish miR-430. Curr. Biol. 16, 2135–2142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Slack, F. J. & Ruvkun, G. A novel repeat domain that is often associated with RING finger and B-box motifs. Trends Biochem. Sci. 23, 474–475 (1998).

    CAS  PubMed  Google Scholar 

  65. Meroni, G. & Diez-Roux, G. TRIM/RBCC, a novel class of 'single protein RING finger' E3 ubiquitin ligases. BioEssays 27, 1147–1157 (2005).

    CAS  PubMed  Google Scholar 

  66. Rybak, A. et al. The let-7 target gene mouse lin-41 is a stem cell specific E3 ubiquitin ligase for the miRNA pathway protein Ago2. Nature Cell Biol. 11, 1411–1420 (2009).

    CAS  PubMed  Google Scholar 

  67. Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549 (2009). This study is the first report of target interactions having a protective effect on miRNA stability.

    CAS  PubMed  Google Scholar 

  68. Diederichs, S. & Haber, D. A. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108 (2007).

    CAS  PubMed  Google Scholar 

  69. Neumuller, R. A. et al. Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454, 241–245 (2008).

    PubMed  PubMed Central  Google Scholar 

  70. Hammell, C. M., Lubin, I., Boag, P. R., Blackwell, T. K. & Ambros, V. nhl-2 modulates microRNA activity in Caenorhabditis elegans. Cell 136, 926–938 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chu, C. Y. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006).

    PubMed  PubMed Central  Google Scholar 

  72. Eulalio, A. et al. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev. 21, 2558–2570 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Schwamborn, J. C., Berezikov, E. & Knoblich, J. A. The TRIM–NHL protein TRIM32 activates microRNAs and prevents self-renewal in mouse neural progenitors. Cell 136, 913–925 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chang, T. C. et al. Lin-28B transactivation is necessary for Myc-mediated let-7 repression and proliferation. Proc. Natl Acad. Sci. USA 106, 3384–9 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Qi, H. H. et al. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455, 421–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, C. et al. Hypoxia potentiates microRNA-mediated gene silencing through post-translational modification of Argonaute2. Mol. Cell. Biol. 31, 4760–4774 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rudel, S. et al. Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 39, 2330–2343 (2011).

    PubMed  Google Scholar 

  78. Leung, A. K. et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 42, 489–499 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Grishok, A. et al. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34 (2001).

    CAS  PubMed  Google Scholar 

  80. Chatterjee, S., Fasler, M., Bussing, I. & Grosshans, H. Target-mediated protection of endogenous microRNAs in C. elegans. Dev. Cell 20, 388–396 (2011).

    CAS  PubMed  Google Scholar 

  81. Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wyman, S. K. et al. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res. 21, 1450–1461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kai, Z. S. & Pasquinelli, A. E. MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nature Struct. Mol. Biol. 17, 5–10 (2010).

    CAS  Google Scholar 

  84. Baccarini, A. et al. Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr. Biol. 21, 369–376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010). References 81, 84 and 85 demonstrated that some miRNA–target interactions result in destabilization of the miRNA.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Franco-Zorrilla, J. M. et al. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genet. 39, 1033–1037 (2007). This paper provides the first example of an endogenous ncRNA acting as a sponge to limit the activity of a specific miRNA on other targets.

    CAS  PubMed  Google Scholar 

  87. Ivashuta, S. et al. Regulation of gene expression in plants through miRNA inactivation. PLoS ONE 6, e21330 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Todesco, M., Rubio-Somoza, I., Paz-Ares, J. & Weigel, D. A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. PLoS Genet. 6, e1001031 (2010).

    PubMed  PubMed Central  Google Scholar 

  89. Cesana, M. et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 147, 358–369 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Karreth, F. A. et al. In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382–395 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Poliseno, L. et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465, 1033–1038 (2010). References 89 and 91 provide the first examples of pseudogenes and lncRNAs functioning as sponges to titrate miRNAs from protein-coding mRNAs with common miRNA target sites.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Seitz, H. Redefining microRNA targets. Curr. Biol. 19, 870–873 (2009). This paper develops the original hypothesis that the function of some miRNA target interactions is to sequester the miRNA, as opposed to repress expression of the target mRNA.

    CAS  PubMed  Google Scholar 

  94. Sumazin, P. et al. An extensive microRNA-mediated network of RNA–RNA interactions regulates established oncogenic pathways in glioblastoma. Cell 147, 370–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Tay, Y. et al. Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344–357 (2011). References 90, 94 and 95 show that there is competition for miRNA activity among protein-coding mRNAs that contain target sites for a common miRNA, thus revealing an extensive network of ceRNAs that regulate miRNA effectiveness.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Vandewalle, C. et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res. 33, 6566–6578 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Ponting, C. P., Oliver, P. L. & Reik, W. Evolution and functions of long noncoding RNAs. Cell 136, 629–641 (2009).

    CAS  PubMed  Google Scholar 

  98. Ebert, M. S., Neilson, J. R. & Sharp, P. A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods 4, 721–726 (2007).

    CAS  PubMed  Google Scholar 

  99. Ebert, M. S. & Sharp, P. A. MicroRNA sponges: progress and possibilities. RNA 16, 2043–2050 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008).

    CAS  PubMed  Google Scholar 

  101. Mercer, T. R. et al. Expression of distinct RNAs from 3′ untranslated regions. Nucleic Acids Res. 39, 2393–2403 (2011).

    CAS  PubMed  Google Scholar 

  102. Beitzinger, M., Peters, L., Zhu, J. Y., Kremmer, E. & Meister, G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 4, 76–84 (2007).

    CAS  PubMed  Google Scholar 

  103. Easow, G., Teleman, A. A. & Cohen, S. M. Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Hendrickson, D. G., Hogan, D. J., Herschlag, D., Ferrell, J. E. & Brown, P. O. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3, e2126 (2008).

    PubMed  PubMed Central  Google Scholar 

  105. Karginov, F. V. et al. A biochemical approach to identifying microRNA targets. Proc. Natl Acad. Sci. USA 104, 19291–19296 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Landthaler, M. et al. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14, 2580–2596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, L. et al. Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol. Cell 28, 598–613 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Salles, F. J., Richards, W. G. & Strickland, S. Assaying the polyadenylation state of mRNAs. Methods 17, 38–45 (1999).

    CAS  PubMed  Google Scholar 

  109. Jovanovic, M. et al. A quantitative targeted proteomics approach to validate predicted microRNA targets in C. elegans. Nature Methods 7, 837–842 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    CAS  PubMed  Google Scholar 

  111. Jackson, R. J., Hellen, C. U. & Pestova, T. V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nature Rev. Mol. Cell Biol. 11, 113–127 (2010).

    CAS  Google Scholar 

  112. Johnston, M. & Hutvagner, G. Post-translational modification of Argonautes and their role in small RNA mediated gene regulation. Silence 2, 5 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Pasquinelli, A. E. Molecular biology. Paring miRNAs through pairing. Science 328, 1494–1495 (2010).

    PubMed  Google Scholar 

  114. Ebert, M. S. & Sharp, P. A. Emerging roles for natural microRNA sponges. Curr. Biol. 20, R858–R861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research in this laboratory is supported by the US National Institutes of Health (GM071654), Keck and Peter Gruber Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amy E. Pasquinelli.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Author's homepage

Nature Reviews Genetics Series on Non-coding RNA

Glossary

miRNA-induced silencing complex

(miRISC). This is composed of the miRNA guide and the effector proteins, which minimally include Argonaute proteins. The complex recruits additional proteins to regulate the stability or translation of targeted mRNAs.

Crosslinking immunoprecipitation

(CLIP). A method used to isolate and identify sequences that are bound by specific RNA-binding proteins. CLIP of microRNA complex proteins, such as Argonaute, has been used to detect microRNA-induced silencing complex (miRISC)-binding sites on genome-wide scales.

GW182 proteins

Glycine–tryptophan repeat-containing proteins that interact with the microRNA-induced silencing complex (miRISC) to recruit proteins that mediate degradation or translational repression of target mRNAs. Also known as TNRC6A, TNRC6B and TNRC6C in vertebrates and AIN-1 and AIN-2 in Caenorhabditis elegans.

Fragile X mental retardation syndrome-related protein 1

(FXR1). An RNA-binding protein that can regulate the translation or stability of bound transcripts.

P bodies

Processing bodies, or P bodies, are cytoplasmic foci enriched for proteins that are involved in RNA degradation but that are devoid of translation factors. MicroRNAs, Argonaute and GW182 proteins also localize to P bodies, and silencing of some targets may occur in these structures.

Competing endogenous RNAs

(ceRNAs). Bind miRNA complexes, titrating them from other target RNAs. Long non-coding RNAs, pseudogene RNAs and mRNAs can compete with other RNAs for access to specific miRNA complexes, effectively diluting their activity.

Pseudogene

Relatives of protein-coding genes that can no longer be translated into functional gene products. In some cases, pseudogene RNAs are still transcribed but are then improperly processed or translated.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pasquinelli, A. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet 13, 271–282 (2012). https://doi.org/10.1038/nrg3162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrg3162

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research