Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cancer-associated miRNAs and their therapeutic potential

Subjects

Abstract

MicroRNA (miRNA; miR) is a functionally small non-coding RNA and can negatively regulate gene expression by directly binding to the target gene. Some miRNAs are closely involved in the development and progression of cancer and are abnormally expressed in many cancer types. Therefore, control of the expression of cancer-associated miRNAs is expected as a next-generation drug modality to treat advanced types of cancers with high unmet medical needs. Indeed, miRNA therapeutics, which are based on the functional inhibition of oncogenic miRNA (OncomiR) using antisense oligonucleotides (anti-miR) and the replacement via the introduction of a synthetic miRNA mimic for tumor suppressive miRNA (TS-miR), have been developed. In this review, we summarize cancer-associated miRNAs related to various cancer pathologies and their clinical application to miRNA therapeutics for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bartel DP. Metazoan MicroRNAs. Cell. 2018;173:20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Disco. 2017;16:203–22.

    Article  CAS  Google Scholar 

  3. Abd-Aziz N, Kamaruzman NI, Poh CL. Development of MicroRNAs as Potential Therapeutics against Cancer. J Oncol. 2020;15:8029721.

    Google Scholar 

  4. Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15:321–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuan Y, Kasar S, Underbayev C, Prakash S, Raveche E. MicroRNAs in Acute Myeloid Leukemia and Other Blood Disorders. Leuk Res Treat. 2012;2012:603830.

    Google Scholar 

  6. Stickel N, Hanke K, Marschner D, Prinz G, Köhler M, Melchinger W, et al. MicroRNA-146a reduces MHC-II expression via targeting JAK/STAT signaling in dendritic cells after stem cell transplantation. Leukemia 2017;31:2732–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ors-Kumoglu G, Gulce-Iz S, Biray-Avci C. Therapeutic microRNAs in human cancer. Cytotechnology. 2019;71:411–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post- transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 2008;27:2128–36.

    Article  CAS  PubMed  Google Scholar 

  9. Frankel LB, Christoffersen NR, Jacobsen A, Lindow M, Krogh A, Lund AH. Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem. 2008;283:1026–33.

    Article  CAS  PubMed  Google Scholar 

  10. Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008;14:2348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 2011;13:R2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 2007;104:16170–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci USA 2009;106:7113–18.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR‐155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 2009;1792:497–505.

    Article  CAS  PubMed  Google Scholar 

  15. Tili E, Croce CM, Michaille JJ. miR-155: on the crosstalk between inflammation and cancer. Int Rev Immunol. 2009;28:264–84.

    Article  CAS  PubMed  Google Scholar 

  16. Tili E, Michaille JJ, Wernicke D, Alder H, Costinean S, Volinia S, et al. Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer. Proc Natl Acad Sci USA 2011;108:4908–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Babar IA, Cheng CJ, Booth CJ, Liang X, Weidhaas JB, Saltzman WM, et al. Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma. Proc Natl Acad Sci USA 2012;109:E1695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Seto AG, Beatty X, Lynch JM, Hermreck M, Tetzlaff M, Duvic M, et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol. 2018;183:428–44.

    Article  CAS  PubMed  Google Scholar 

  19. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  20. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down- regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kotani A, Ha D, Schotte D, den Boer ML, Armstrong SA, Lodish HF. A novel mutation in the miR‐128b gene reduces miRNA processing and leads to glucocorticoid resistance of MLL–AF4 acute lymphocytic leukemia cells. Cell Cycle. 2010;9:1037–42.

    Article  CAS  PubMed  Google Scholar 

  23. Fedullo AL, Messina M, Elia L, Piciocchi A, Gianfelici V, Lauretti A, et al. Prognostic implicationsof additional genomic lesions in adult Philadelphia chromosome-positive acute lymphoblastic leukemia. Haematologica. 2019;104:312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004;64:3753–6.

    Article  CAS  PubMed  Google Scholar 

  25. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, et al. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res. 2008;68:8535–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science. 2007;315:1576–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kozaki K, Inazawa J. Tumor‐suppressive microRNA silenced by tumor‐specific DNA hypermethylation in cancer cells. Cancer Sci. 2012;103:837–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kozaki K, Imoto I, Mogi S, Omura K, Inazawa J. Exploration of tumor-suppressive microRNAs silenced by DNA hypermethylation in oral cancer. Cancer Res. 2008;68:2094–105.

    Article  CAS  PubMed  Google Scholar 

  29. Furuta M, Kozaki KI, Tanaka S, Arii S, Imoto I, Inazawa J. miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma. Carcinogenesis. 2010;31:766–76.

    Article  CAS  PubMed  Google Scholar 

  30. Uesugi A, Kozaki K, Tsuruta T, Furuta M, Morita K, Imoto I, et al. The tumor suppressive microRNA miR-218 targets the mTOR component Rictor and inhibits AKT phosphorylation in oral cancer. Cancer Res. 2011;71:5765–78.

    Article  CAS  PubMed  Google Scholar 

  31. Tsuruta T, Kozaki K, Uesugi A, Furuta M, Hirasawa A, Imoto I, et al. miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 2011;71:6450–62.

    Article  CAS  PubMed  Google Scholar 

  32. Endo H, Muramatsu T, Furuta M, Uzawa N, Pimkhaokham A, Amagasa T, et al. Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer. Carcinogenesis. 2013;34:560–9.

    Article  CAS  PubMed  Google Scholar 

  33. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 2008;105:13556–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol. 2009;41:87–95.

    Article  CAS  PubMed  Google Scholar 

  35. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447:1130–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43.

    Article  CAS  PubMed  Google Scholar 

  37. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell. 2007;26:745–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007;17:1298–307.

    Article  CAS  PubMed  Google Scholar 

  39. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, et al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle. 2007;6:1586–93.

    Article  CAS  PubMed  Google Scholar 

  40. Inamura K, Ishikawa Y. MicroRNA In Lung Cancer: novel Biomarkers and Potential Tools for Treatment. J Clin Med. 2016;5:36.

    Article  PubMed Central  CAS  Google Scholar 

  41. Adams BD, Kasinski AL, Slack FJ. Aberrant regulation and function of microRNAs in cancer. Curr Biol. 2014;24:R762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Foulkes WD, Priest JR, Duchaine TF. DICER1: mutations, microRNAs and mechanisms. Nat Rev Cancer. 2014;14:662–72.

    Article  CAS  PubMed  Google Scholar 

  43. Hurst DR, Edmonds MD, Welch DR. Metastamir: the Field of Metastasis-Regulatory microRNA Is Spreading. Cancer Res. 2009;69:7495–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007;449:682–8.

    Article  CAS  PubMed  Google Scholar 

  45. Yoo B, Kavishwar A, Ross A, Wang P, Tabassum DP, Polyak K, et al. Combining miR-10b–Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Res. 2015;75:4407–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoo B, Kavishwar A, Wang P, Ross A, Pantazopoulos P, Dudley M, et al. Therapy targeted to the metastatic niche is effective in a model of stage IV breast cancer. Sci Rep. 2017;21:e45060.

    Article  CAS  Google Scholar 

  47. Yoo B, Greninger P, Stein GT, Egan RK, McClanaghan J, Moore A, et al. Potent and selective effect of the mir-10b inhibitor MN-anti-mir10b in human cancer cells of diverse primary disease origin. PLOS ONE. 2018;13:e0201046.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR-655 Is an EMT-Suppressive MicroRNA Targeting ZEB1 and TGFBR2. PLOS ONE. 2013;8:e62757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang S, Olson EN. AngiomiRs–key regulators of angiogenesis. Curr Opin Genet Dev. 2009;19:205–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kroesen BJ, Teteloshvili N, Smigielska-Czepiel K, Brouwer E, Boots AM, van den Berg A, et al. Immuno-miRs: critical regulators of T-cell development, function and ageing. Immunology. 2015;144:1–10.

    Article  CAS  PubMed  Google Scholar 

  51. Yamamoto S, Inoue J, Kawano T, Kozaki K, Omura K, Inazawa J. The impact of miRNA-based molecular diagnostics and treatment of NRF2-stabilized tumors. Mol Cancer Res. 2014;12:58–68.

    Article  CAS  PubMed  Google Scholar 

  52. Fujiwara N, Inoue J, Kawano T, Tanimoto K, Kozaki K, Inazawa J. miR-634 Activates the Mitochondrial Apoptosis Pathway and Enhances Chemotherapy-Induced Cytotoxicity. Cancer Res. 2015;75:3890–901.

    Article  CAS  PubMed  Google Scholar 

  53. Gokita K, Inoue J, Ishihara H, Kojima K, Inazawa J. Therapeutic Potential of LNP-Mediated Delivery of miR-634 for Cancer Therapy. Mol Ther Nucleic Acids. 2020;19:330–8.

    Article  CAS  PubMed  Google Scholar 

  54. Inoue J, Fujiwara K, Hamamoto H, Kobayashi K, Inazawa J. Improving the Efficacy of EGFR Inhibitors by Topical Treatment of Cutaneous Squamous Cell Carcinoma with miR-634 Ointment. Mol Ther Oncolytics. 2020;19:294–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Takagawa Y, Gen Y, Muramatsu T, Tanimoto K, Inoue J, Harada H, et al. miR-1293, a Candidate for miRNA-Based Cancer Therapeutics, Simultaneously Targets BRD4 and the DNA Repair Pathway. Mol Ther. 2020;28:1494–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nehal KS, Bichakjian CK. Update on Keratinocyte Carcinomas. N Engl J Med. 2018;379:363–74.

    Article  CAS  PubMed  Google Scholar 

  57. Fayne R, Nanda S, Nichols A, Shen J. Combination Topical Chemotherapy for the Treatment of an Invasive Cutaneous Squamous Cell Carcinoma. J Drugs Dermatol. 2020;19:202–4.

    Article  PubMed  Google Scholar 

  58. Lewis CM, Glisson BS, Feng L, Wan F, Tang X, Wistuba II, et al. A phase II study of gefitinib for aggressive cutaneous squamous cell carcinoma of the head and neck. Clin Cancer Res. 2012;18:1435–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. William WN Jr, Feng L, Ferrarotto R, Ginsberg L, Kies M, Lippman S, et al. Gefitinib for patients with incurable cutaneous squamous cell carcinoma: a single-arm phase II clinical trial. J Am Acad Dermatol. 2017;77:1110–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cañueto J, Cardeñoso E, García JL, Santos-Briz Á, Castellanos-Martín A, Fernández-López E, et al. Epidermal growth factor receptor expression is associated with poor outcome in cutaneous squamous cell carcinoma. Br J Dermatol. 2017;176:1279–87.

    Article  PubMed  CAS  Google Scholar 

  61. Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: a literature review. J Cell Physiol. 2019;233:1–16.

    Google Scholar 

  62. Hong DS, Kang YK, Borad M, Sachdev J, Ejadi S, Lim HY, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br J Cancer. 2020;122:1630–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. van Zandwijk N, Pavlakis N, Kao SC, Linton A, Boyer MJ, Clarke S, et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol. 2017;18:1386–96.

    Article  PubMed  Google Scholar 

  64. Reid G, Kao SC, Pavlakis N, Brahmbhatt H, MacDiarmid J, Clarke S, et al. Clinical development of TargomiRs, a miRNA mimic-based treatment for patients with recurrent thoracic cancer. Epigenomics. 2016;8:1079–85.

    Article  CAS  PubMed  Google Scholar 

  65. Kwok GT, Zhao JT, Weiss J, Mugridge N, Brahmbhatt H, MacDiarmid JA, et al. Translational applications of microRNAs in cancer, and therapeutic implications. Noncoding RNA Res. 2017;2:143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, et al. The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS ONE. 2013;8:e60155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hiramoto H, Muramatsu T, Ichikawa D, Tanimoto K, Yasukawa S, Otsuji E, et al. miR-509-5p and miR-1243 increase the sensitivity to gemcitabine by inhibiting epithelial-mesenchymal transition in pancreatic cancer. Sci Rep. 2017;7:4002.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Tonouchi E, Gen Y, Muramatsu T, Hiramoto H, Tanimoto K, Inoue J, et al. miR-3140 suppresses tumor cell growth by targeting BRD4 via its coding sequence and downregulates the BRD4-NUT fusion oncoprotein. Sci Rep. 2018;8:4482.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research (18K06954, 16K14630), for Scientific Research on Innovative Areas “Conquering cancer through NEO-dimensional systems understandings” (15H05908) from JSPS and MEXT, a research program of the Project for Cancer Research and Therapeutic Evolution (P-CREATE), and the Tailor-Made Medical Treatment with the BioBank Japan Project (BBJ) from the Japan Agency for Medical Research and Development (AMED). This study was supported by Nanken-Kyoten, TMDU.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Inoue or Johji Inazawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, J., Inazawa, J. Cancer-associated miRNAs and their therapeutic potential. J Hum Genet 66, 937–945 (2021). https://doi.org/10.1038/s10038-021-00938-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-021-00938-6

This article is cited by

Search

Quick links