Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomarker development in the precision medicine era: lung cancer as a case study

Key Points

  • Precision medicine seeks to identify and classify individual patients so that optimal treatment decisions can be made. Nations are recognizing this area of research by developing national cohorts from which to collect data and developing regulatory guidelines on biomarkers.

  • The cost of genetic sequencing and other 'omics' technologies has decreased while the quality of data they generate has increased. Thus, immense amounts of molecular data are being derived from cohort studies to begin developing new biomarkers to classify patients into subtypes.

  • The development of biomarkers is largely limited by the following factors: low statistical power in rare subtypes; risk of false-positive findings in studies that do not validate their findings in a separate cohort and/or conduct concomitant mechanistic experiments; and technical reproducibility concerns.

  • Genomics and protein immunohistochemistry have led the way for developing biomarkers. Other molecular measurements (for example, metabolomics and microbiomics) are still in preliminary stages and are often not validated in another cohort.

  • Integrating different types of molecules into a biomarker panel, along with other patient data, is the future of precision medicine; however, the sheer number of potential combinations of data types complicates the concerns about statistical power and reproducibility.

  • Currently, improved biomarkers are needed to differentiate lung nodules identified by new US national screening recommendations into non-cancer, cancer with poor survival probability and cancer with higher survival probability subtypes, to provide thousands of individuals with precise treatment decisions.

Abstract

Precision medicine relies on validated biomarkers with which to better classify patients by their probable disease risk, prognosis and/or response to treatment. Although affordable 'omics'-based technology has enabled faster identification of putative biomarkers, the validation of biomarkers is still stymied by low statistical power and poor reproducibility of results. This Review summarizes the successes and challenges of using different types of molecule as biomarkers, using lung cancer as a key illustrative example. Efforts at the national level of several countries to tie molecular measurement of samples to patient data via electronic medical records are the future of precision medicine research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classifying patients into new, specific taxa.
Figure 2: A precision medicine research strategy.
Figure 3: Knowledge of non-small cell lung adenocarcinoma has evolved in recent decades.
Figure 4: The lung exposome.
Figure 5: Use of precision medicine to classify patients with early-stage lung cancer into subclasses to provide appropriate treatment.

Similar content being viewed by others

References

  1. Obama, B. Remarks by the President in State of the Union Address | January 20, 2015. The White House https://www.whitehouse.gov/the-press-office/2015/01/20/remarks-president-state-union-address-january-20-2015 (2015).

  2. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).An overview of the US approach to generate a national cohort for precision medicine research.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. US National Institutes of Health (NIH). NIH workshop on building a precision medicine research cohort. NIH http://www.nih.gov/precisionmedicine/workshop.htm (2015).

  4. Elliott, P., Peakman, T. C. & Biobank UK. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 37, 234–244 (2008).A summary of the UK Biobank, which will serve as an important resource for precision medicine research.

    Article  PubMed  Google Scholar 

  5. Frank, L. Epidemiology. When an entire country is a cohort. Science 287, 2398–2399 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. National Research Council. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies Press, 2011).A comprehensive review of precision medicine research, a taxonomy of terms and a suggested approach for conducting precision medicine research in the future.

  7. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).A comprehensive analysis of lung adenocarcinoma describing many different molecular subtypes.

  8. Pepe, M. S. et al. Phases of biomarker development for early detection of cancer. J. Natl Cancer Inst. 93, 1054–1061 (2001).A summary of common concerns when developing biomarkers for clinical use.

    Article  CAS  PubMed  Google Scholar 

  9. US Food and Drug Administration (FDA). In Vitro Companion Diagnostic Devices: Guidance for Industry and Food and Drug Administration Staff (CBER/CDRH/FDA, 2014).

  10. Mansfield, E. A. FDA perspective on companion diagnostics: an evolving paradigm. Clin. Cancer Res. 20, 1453–1457 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. European Medicines Agency (EMEA). Definitions for Genomic Biomarkers, Pharmacogenomics, Pharmacogenetics, Genomic Data and Sample Coding Categories (EMEA/CHMP/ICH, 2007).

  12. European Medicines Agency (EMA). Qualification of Novel Methodologies for Drug Development: Guidance to Applicants (EMA/CHMP/SAWP, 2009).

  13. Pharmaceuticals and Medical Devices Agency. Technical Guidance on Development of In Vitro Companion Diagnostics and Corresponding Therapeutic Products (Ministry of Health, Labour and Welfare, 2013).

  14. Pignatti, F. et al. Cancer drug development and the evolving regulatory framework for companion diagnostics in the European Union. Clin. Cancer Res. 20, 1458–1468 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Senderowicz, A. M. & Pfaff, O. Similarities and differences in the oncology drug approval process between FDA and European Union with emphasis on in vitro companion diagnostics. Clin. Cancer Res. 20, 1445–1452 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Tazawa, Y. Perspective for the development of companion diagnostics and regulatory landscape to encourage personalized medicine in Japan. Breast Cancer 23, 19–23 (2015).

    Article  PubMed  Google Scholar 

  17. US Food and Drug Administration (FDA). FDA approves afatinib. FDA http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm360574.htm (2016).

  18. Lindeman, N. I. et al. Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the College of American Pathologists, International Association for the Study of Lung Cancer, and Association for Molecular Pathology. J. Mol. Diagn. 15, 415–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. McNeil, C. Regulating laboratory-developed tests: devil will be in details. J. Natl Cancer Inst. 107, djv113 (2015).

    Article  PubMed  Google Scholar 

  20. US Food and Drug Administration (FDA). Administrative Procedures for CLIA Categorization: Guidance for Industry and Food and Drug Administration Staff (CDRH/DHHS/FDA, 2014).

  21. American Cancer Society. Cancer Facts & Figures 2014. (American Cancer Society, 2014).

  22. Rodenhuis, S. et al. Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. N. Engl. J. Med. 317, 929–935 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Campbell, J.D. et al. Distinct patterns of somatic genome alternations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 48, 607–616 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kerr, K. M. et al. Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small-cell lung cancer. Ann. Oncol. 25, 1681–1690 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Korpanty, G. J., Graham, D. M., Vincent, M. D. & Leighl, N. B. Biomarkers that currently affect clinical practice in lung cancer: EGFR, ALK, MET, ROS-1, and KRAS. Front. Oncol. 4, 204 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dimou, A. & Papadimitrakopoulou, V. Non-small cell lung cancer beyond biomarkers: the evolving landscape of clinical trial design. J. Pers. Med. 4, 386–401 (2014).A description of new efforts to adapt clinical trials to address precision medicine questions in lung cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kumar, M., Ernani, V. & Owonikoko, T. K. Biomarkers and targeted systemic therapies in advanced non-small cell lung cancer. Mol. Aspects Med. 45, 55–66 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rooney, C. & Sethi, T. Advances in molecular biology of lung disease: aiming for precision therapy in non-small cell lung cancer. Chest 148, 1063–1072 (2015).

    Article  PubMed  Google Scholar 

  30. Kwak, E. L. et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med. 363, 1693–1703 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vallee, A., Le Loupp, A. G. & Denis, M. G. Efficiency of the Therascreen(R) RGQ PCR kit for the detection of EGFR mutations in non-small cell lung carcinomas. Clin. Chim. Acta 429, 8–11 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. European Medicines Agency (EMA). Giotrib (afatinib). EMA http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/002280/human_med_001698.jsp&mid=WC0b01ac058001d124 (2016).

  33. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  34. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Butkiewicz, D. et al. Genetic polymorphisms in DNA repair genes and risk of lung cancer. Carcinogenesis 22, 593–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Li, Y. et al. Genetic variants and risk of lung cancer in never smokers: a genome-wide association study. Lancet Oncol. 11, 321–330 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mechanic, L. E. et al. Common genetic variation in TP53 is associated with lung cancer risk and prognosis in African Americans and somatic mutations in lung tumors. Cancer Epidemiol. Biomarkers Prev. 16, 214–222 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Mechanic, L. E. et al. Polymorphisms in XPD and TP53 and mutation in human lung cancer. Carcinogenesis 26, 597–604 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Pine, S. R. et al. Lung cancer survival and functional polymorphisms in MBL2, an innate-immunity gene. J. Natl Cancer Inst. 99, 1401–1409 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Ryan, B. M. et al. Identification of a functional SNP in the 3′UTR of CXCR2 that is associated with reduced risk of lung cancer. Cancer Res. 75, 566–575 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Zhang, L. et al. Association between single nucleotide polymorphisms (SNPs) and toxicity of advanced non-small-cell lung cancer patients treated with chemotherapy. PLoS ONE 7, e48350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mazurek, A. et al. Quantification of concentration and assessment of EGFR mutation in circulating DNA. Cancer Biomark. 15, 515–524 (2015).

    Article  PubMed  Google Scholar 

  44. Luo, J., Shen, L. & Zheng, D. Diagnostic value of circulating free DNA for the detection of EGFR mutation status in NSCLC: a systematic review and meta-analysis. Sci. Rep. 4, 6269 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pao, W. et al. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2, e73 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jamal-Hanjani, M. et al. Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol. 12, e1001906 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Beer, D. G. et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med. 8, 816–824 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Bhattacharjee, A. et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA 98, 13790–13795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Garber, M. E. et al. Diversity of gene expression in adenocarcinoma of the lung. Proc. Natl Acad. Sci. USA 98, 13784–13789 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kikuchi, T. et al. Expression profiles of non-small cell lung cancers on cDNA microarrays: identification of genes for prediction of lymph-node metastasis and sensitivity to anti-cancer drugs. Oncogene 22, 2192–2205 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Akagi, I. et al. Combination of protein coding and noncoding gene expression as a robust prognostic classifier in stage I lung adenocarcinoma. Cancer Res. 73, 3821–3832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, H. Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Kadara, H. et al. A five-gene and corresponding protein signature for stage-I lung adenocarcinoma prognosis. Clin. Cancer Res. 17, 1490–1501 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Lee, E. S. et al. Prediction of recurrence-free survival in postoperative non-small cell lung cancer patients by using an integrated model of clinical information and gene expression. Clin. Cancer Res. 14, 7397–7404 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Okayama, H. et al. The expression of four genes as a prognostic classifier for stage I lung adenocarcinoma in 12 independent cohorts. Cancer Epidemiol. Biomarkers Prev. 23, 2884–2894 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Oshlack, A., Robinson, M. D. & Young, M. D. From RNA-seq reads to differential expression results. Genome Biol. 11, 220 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Best, M. G. et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liloglou, T., Bediaga, N. G., Brown, B. R., Field, J. K. & Davies, M. P. Epigenetic biomarkers in lung cancer. Cancer Lett. 342, 200–212 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fabbri, M. et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc. Natl Acad. Sci. USA 109, E2110–E2116 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Massie, C. E. & Mills, I. G. Chromatin immunoprecipitation (ChIP) methodology and readouts. Methods Mol. Biol. 505, 123–137 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Herman, J. G., Graff, J. R., Myohanen, S., Nelkin, B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93, 9821–9826 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schumacher, A., Weinhausl, A. & Petronis, A. Application of microarrays for DNA methylation profiling. Methods Mol. Biol. 439, 109–129 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Sandoval, J. et al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer. J. Clin. Oncol. 31, 4140–4147 (2013).

    Article  PubMed  Google Scholar 

  66. Shinjo, K. et al. Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 33, 1277–1285 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Travis, W. D. et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society International multidisciplinary classification of lung adenocarcinoma. J. Thorac. Oncol. 6, 244–285 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Brunnstrom, H. et al. Immunohistochemistry in the differential diagnostics of primary lung cancer: an investigation within the Southern Swedish Lung Cancer study. Am. J. Clin. Pathol. 140, 37–46 (2013).

    Article  PubMed  Google Scholar 

  69. Yanagisawa, K. et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer. Lancet 362, 433–439 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Zhukov, T. A., Johanson, R. A., Cantor, A. B., Clark, R. A. & Tockman, M. S. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry. Lung Cancer 40, 267–279 (2003).

    Article  PubMed  Google Scholar 

  71. Kim, Y. J. et al. Verification of the biomarker candidates for non-small-cell lung cancer using a targeted proteomics approach. J. Proteome Res. 14, 1412–1419 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).A summary of the hallmarks, or characteristics, of cancer.

    Article  CAS  PubMed  Google Scholar 

  73. Alifano, M. et al. Preresection serum C-reactive protein measurement and survival among patients with resectable non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 142, 1161–1167 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Barrera, L. et al. Cytokine profile determined by data-mining analysis set into clusters of non-small-cell lung cancer patients according to prognosis. Ann. Oncol. 26, 428–435 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Enewold, L. et al. Serum concentrations of cytokines and lung cancer survival in African Americans and Caucasians. Cancer Epidemiol. Biomarkers Prev. 18, 215–222 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hong, S., Kang, Y. A., Cho, B. C. & Kim, D. J. Elevated serum C-reactive protein as a prognostic marker in small cell lung cancer. Yonsei Med. J. 53, 111–117 (2012).

    Article  PubMed  Google Scholar 

  77. Ryan, B. M., Pine, S. R., Chaturvedi, A. K., Caporaso, N. & Harris, C. C. A combined prognostic serum interleukin-8 and interleukin-6 classifier for stage 1 lung cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. J. Thorac. Oncol. 9, 1494–1503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Song, G. et al. Personalized biomarkers to monitor disease progression in advanced non-small-cell lung cancer patients treated with icotinib. Clin. Chim. Acta 440, 44–48 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Srimuninnimit, V. et al. C-reactive protein as a monitor of chemotherapy response in advanced non-small cell lung cancer (CML study). J. Med. Assoc. Thai. 95 (Suppl. 2), S199–S207 (2012).

    PubMed  Google Scholar 

  80. Füzéry, A. K., Levin, J., Chan, M. M. & Chan, D. W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: issues and challenges. Clin. Proteom. 10, 13 (2013).

    Article  CAS  Google Scholar 

  81. Atkins, M. B. & Larkin, J. Immunotherapy combined or sequenced with targeted therapy in the treatment of solid tumors: current perspectives. J. Natl Cancer Inst. 108, djv414 (2016).A review of the potential to combine precisely targeted therapies with immunotherapies in oncology.

    Article  CAS  PubMed  Google Scholar 

  82. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. European Medicines Agency (EMA). Keytruda (pembrolizumab). EMA http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003820/human_med_001886.jsp&mid=WC0b01ac058001d124 (2015).

  84. US Food and Drug Administration (FDA). FDA approves Keytruda for advanced non-small cell lung cancer. FDA http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm465444.htm (2015).

  85. US Food and Drug Administration (FDA). FDA expands approved use of Opdivo to treat lung cancer. FDA http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm436534.htm (2015).

  86. European Medicines Agency (EMA). Nivolumab BMS (nivolumab). EMA http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/medicines/003840/human_med_001887.jsp&mid=WC0b01ac058001d124 (2016).

  87. US Food and Drug Administration (FDA). PHARMDX premarket approval. FDA http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=P150013 (2015).

  88. Patel, S. P. & Kurzrock, R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol. Cancer Ther. 14, 847–856 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Shukuya, T. & Carbone, D. P. Predictive markers for the efficacy of anti-PD-1/PD-L1 antibodies in lung cancer. J. Thorac. Oncol. http://dx.doi.org/10.1016/j.jtho.2016.02.015 (2016).

  90. Schalper, K. A. et al. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J. Natl Cancer Inst. 107, dju435 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Nicholson, J. K., Connelly, J., Lindon, J. C. & Holmes, E. Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1, 153–161 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Wishart, D. S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. http://dx.doi.org/10.1038/nrd.2016.32 (2016).

  93. Rocha, C. M. et al. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma. Carcinogenesis 36, 68–75 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Wikoff, W. R. et al. Metabolomic markers of altered nucleotide metabolism in early stage adenocarcinoma. Cancer Prev. Res. (Phila.) 8, 410–418 (2015).

    Article  CAS  Google Scholar 

  95. Fahrmann, J. F. et al. Investigation of metabolomic blood biomarkers for detection of adenocarcinoma lung cancer. Cancer Epidemiol. Biomarkers Prev. 24, 1716–1723 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hori, S. et al. A metabolomic approach to lung cancer. Lung Cancer 74, 284–292 (2011).

    Article  PubMed  Google Scholar 

  97. Li, Y., Song, X., Zhao, X., Zou, L. & Xu, G. Serum metabolic profiling study of lung cancer using ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 966, 147–153 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Miyamoto, S. et al. Systemic metabolomic changes in blood samples of lung cancer patients identified by gas chromatography time-of-flight mass spectrometry. Metabolites 5, 192–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Carrola, J. et al. Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J. Proteome Res. 10, 221–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  100. Mathe, E. A. et al. Noninvasive urinary metabolomic profiling identifies diagnostic and prognostic markers in lung cancer. Cancer Res. 74, 3259–3270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Castle, A. L., Fiehn, O., Kaddurah-Daouk, R. & Lindon, J. C. Metabolomics Standards Workshop and the development of international standards for reporting metabolomics experimental results. Brief. Bioinformat. 7, 159–165 (2006).

    Article  CAS  Google Scholar 

  102. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).

    Article  CAS  PubMed  Google Scholar 

  103. Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pragman, A. A., Kim, H. B., Reilly, C. S., Wendt, C. & Isaacson, R. E. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE 7, e47305 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Segal, L. N. & Blaser, M. J. A brave new world: the lung microbiota in an era of change. Ann. Am. Thorac. Soc. 11 (Suppl. 1), S21–S27 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sapkota, A. R., Berger, S. & Vogel, T. M. Human pathogens abundant in the bacterial metagenome of cigarettes. Environ. Health Perspect. 118, 351–356 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Heijink, I. H., Brandenburg, S. M., Postma, D. S. & van Oosterhout, A. J. Cigarette smoke impairs airway epithelial barrier function and cell–cell contact recovery. Eur. Respir. J. 39, 419–428 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Hosgood, H. D. et al. The potential role of lung microbiota in lung cancer attributed to household coal burning exposures. Environ. Mol. Mutag. 55, 643–651 (2014).

    Article  CAS  Google Scholar 

  109. Castellarin, M. et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 22, 299–306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Flanagan, L. et al. Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. Eur. J. Clin. Microbiol. Infect. Dis. 33, 1381–1390 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Microbiome and anticancer immunosurveillance. Cell 165, 276–287 (2016).

    Article  CAS  PubMed  Google Scholar 

  114. Cardona, S. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wild, C. P. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol. Biomarkers Prev. 14, 1847–1850 (2005).A review of the important impact of the exposome on biomarker development.

    Article  CAS  PubMed  Google Scholar 

  117. Spitz, M. R. et al. An expanded risk prediction model for lung cancer. Cancer Prev. Res. (Phila.) 1, 250–254 (2008).

    Article  Google Scholar 

  118. Spitz, M. R. et al. A risk model for prediction of lung cancer. J. Natl Cancer Inst. 99, 715–726 (2007).

    Article  PubMed  Google Scholar 

  119. Wender, R. et al. American Cancer Society lung cancer screening guidelines. CA Cancer J. Clin. 63, 107–117 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Khariwala, S. S. et al. Self-reported tobacco use does not correlate with carcinogen exposure in smokers with head and neck cancer. Laryngoscope 125, 1844–1848 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Fagan, P. et al. Biomarkers of tobacco smoke exposure in racial/ethnic groups at high risk for lung cancer. Am. J. Public Health 105, 1237–1245 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Hecht, S. S. Lung carcinogenesis by tobacco smoke. Int. J. Cancer 131, 2724–2732 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gibbons, D. L., Byers, L. A. & Kurie, J. M. Smoking, p53 mutation, and lung cancer. Mol. Cancer Res. 12, 3–13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Takahashi, T. et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 246, 491–494 (1989).

    Article  CAS  PubMed  Google Scholar 

  126. Dobbin, K. K. et al. Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. Clin. Cancer Res. 11, 565–572 (2005).

    CAS  PubMed  Google Scholar 

  127. Florkowski, C. M. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin. Biochem. Rev. 29 (Suppl. 1), S83–S87 (2008).

    PubMed  PubMed Central  Google Scholar 

  128. Pagano, M. & Gauvreau, K. Principles of Biostatistics (ed. Crockett, C.) (Brooks/Cole, 2000).

    Google Scholar 

  129. Polley, M. Y. et al. Statistical and practical considerations for clinical evaluation of predictive biomarkers. J. Natl Cancer Inst. 105, 1677–1683 (2013).A summary of the statistical challenges and considerations for biomarker development.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Rothman, K. J. Epidemiology: An Introduction (Oxford Univ. Press, 2012).

    Google Scholar 

  131. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Riely, G. J. et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin. Cancer Res. 14, 5731–5734 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Yuan, Y. et al. Assessing the clinical utility of cancer genomic and proteomic data across tumor types. Nat. Biotechnol. 32, 644–652 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Saito, M. et al. The association of microRNA expression with prognosis and progression in early-stage, non-small cell lung adenocarcinoma: a retrospective analysis of three cohorts. Clin. Cancer Res. 17, 1875–1882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Robles, A. I. et al. An integrated prognostic classifier for stage I lung adenocarcinoma based on mRNA, microRNA and DNA methylation biomarkers. J. Thorac. Oncol. 10, 1037–1048 (2015).A report on a validated, multiple 'omics' biomarker panel for lung adenocarcinoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Liu, C. Y. et al. Genome-wide gene-asbestos exposure interaction association study identifies a common susceptibility variant on 22q13.31 associated with lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 24, 1564–1573 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01248247?term=NCT01248247&rank=1 (2016).An example of a precision medicine clinical trial.

  138. US National Library of Medicine. ClinicalTrials.gov, https://clinicaltrials.gov/ct2/show/NCT01306045?term=NCT01306045&rank=1 (2016).

  139. Glass, K., Huttenhower, C., Quackenbush, J. & Yuan, G. C. Passing messages between biological networks to refine predicted interactions. PLoS ONE 8, e64832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Le Cao, K. A., Boitard, S. & Besse, P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. BMC Bioinformatics 12, 253 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Liquet, B., Le Cao, K. A., Hocini, H. & Thiebaut, R. A novel approach for biomarker selection and the integration of repeated measures experiments from two assays. BMC Bioinformatics 13, 325 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Valente, A. X. & Cusick, M. E. Yeast protein interactome topology provides framework for coordinated-functionality. Nucleic Acids Res. 34, 2812–2819 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Li, L. et al. Integrated omic analysis of lung cancer reveals metabolism proteome signatures with prognostic impact. Nat. Commun. 5, 5469 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Kim, S. C. et al. A high-dimensional, deep-sequencing study of lung adenocarcinoma in female never-smokers. PLoS ONE 8, e55596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. International Cancer Genome Consortium. International network of cancer genome projects. Nature 464, 993–998 (2010).

  147. Erler, J. T. & Linding, R. Network-based drugs and biomarkers. J. Pathol. 220, 290–296 (2010).

    CAS  PubMed  Google Scholar 

  148. Greene, C. S. et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet. 47, 569–576 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Taylor, I. W. et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 27, 199–204 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Chin, C. D., Linder, V. & Sia, S. K. Commercialization of microfluidic point-of-care diagnostic devices. Lab. Chip 12, 2118–2134 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Day, N. et al. EPIC-Norfolk: study design and characteristics of the cohort. European Prospective Investigation of Cancer. Br. J. Cancer 80 (Suppl. 1), 95–103 (1999).

    PubMed  Google Scholar 

  152. Women's Health Initiative Study Group. Design of the Women's Health Initiative clinical trial and observational study. Control. Clin. Trials 19, 61–109 (1998).

  153. McCarty, C. A. et al. The eMERGE Network: a consortium of biorepositories linked to electronic medical records data for conducting genomic studies. BMC Med. Genom. 4, 13 (2011).

    Article  Google Scholar 

  154. Altman, D. G., McShane, L. M., Sauerbrei, W. & Taube, S. E. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. PLoS Med. 9, e1001216 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Altman, D. G., McShane, L. M., Sauerbrei, W. & Taube, S. E. Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. BMC Med. 10, 51 (2012).References 154 and 155 provide guidelines on how tumour biomarker studies should be reported to improve the field.

    Article  PubMed  PubMed Central  Google Scholar 

  156. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). Exp. Oncol. 28, 99–105 (2006).

    CAS  PubMed  Google Scholar 

  157. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). Nat. Clin. Pract. Urol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  158. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies. J. Clin. Oncol. 23, 9067–9072 (2005).

    Article  PubMed  Google Scholar 

  159. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). Nat. Clin. Pract. Oncol. 2, 416–422 (2005).

    CAS  PubMed  Google Scholar 

  160. McShane, L. M. et al. Reporting recommendations for tumour marker prognostic studies (REMARK). Br. J. Cancer 93, 387–391 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. McShane, L. M. et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J. Natl Cancer Inst. 97, 1180–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. McShane, L. M. et al. Reporting recommendations for tumour marker prognostic studies (REMARK). Eur. J. Cancer 41, 1690–1696 (2005).

    Article  PubMed  Google Scholar 

  163. Srivastava, S. The early detection research network: 10-year outlook. Clin. Chem. 59, 60–67 (2013).

    Article  CAS  PubMed  Google Scholar 

  164. McRonald, F. E. et al. The UK Lung Screen (UKLS): demographic profile of first 88,897 approaches provides recommendations for population screening. Cancer Prev. Res. (Phila.) 7, 362–371 (2014).

    Article  Google Scholar 

  165. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 365, 395–409 (2011).Reports on findings that support the use of LDCT to screen for lung cancer.

  166. Schmidt, C. Lung cancer screening poised to expand. J. Natl Cancer Inst. 107, djv114 (2015).

    Article  PubMed  Google Scholar 

  167. Ma, J., Ward, E. M., Smith, R. & Jemal, A. Annual number of lung cancer deaths potentially avertable by screening in the United States. Cancer 119, 1381–1385 (2013).

    Article  PubMed  Google Scholar 

  168. Pinsky, P. F. & Berg, C. D. Applying the National Lung Screening Trial eligibility criteria to the US population: what percent of the population and of incident lung cancers would be covered? J. Med. Screen. 19, 154–156 (2012).

    Article  PubMed  Google Scholar 

  169. Patz, E. F. Jr et al. Lung cancer incidence and mortality in National Lung Screening Trial participants who underwent low-dose CT prevalence screening: a retrospective cohort analysis of a randomised, multicentre, diagnostic screening trial. Lancet Oncol. http://dx.doi.org/10.1016/S1470-2045(15)00621-X (2016).

  170. Lee, H. Y. et al. Role of CT and PET imaging in predicting tumor recurrence and survival in patients with lung adenocarcinoma: a comparison with the International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma. J. Thorac. Oncol. 10, 1785–1794 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Ruparel, M. et al. Pulmonary nodules and CT screening: the past, present and future. Thorax 71, 367–375 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Elmore, J. G. et al. Ten-year risk of false positive screening mammograms and clinical breast examinations. N. Engl. J. Med. 338, 1089–1096 (1998).

    Article  CAS  PubMed  Google Scholar 

  173. Ahmad, A. & Gadgeel, S. M. (eds) Lung Cancer and Personalized Medicine (Springer, 2016).

    Book  Google Scholar 

  174. Alberg, A. J. & Samet, J. M. Epidemiology of lung cancer. Chest 123, 21S–49S (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the Intramural Program of the Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA, and the Cancer Prevention Fellowship Program, National Cancer Institute, Rockville, Maryland, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis C. Harris.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, A., Harris, C. Biomarker development in the precision medicine era: lung cancer as a case study. Nat Rev Cancer 16, 525–537 (2016). https://doi.org/10.1038/nrc.2016.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.56

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer