Reviews & Analysis

Filter By:

Year
  • Elucidating the origin of light-induced reaction rate enhancement in plasmonic photocatalysis is very challenging. Now, bimetallic supercrystals are reported to boost photocatalytic hydrogen evolution from formic acid with the sole aid of intensified electric fields.

    • Alberto Naldoni
    News & Views
  • Iron–nitrogen–carbon (FeNC) catalysts are a viable alternative to platinum, but still lack the necessary performance. Now, pyrolysis under forming gas is found as a path to boosting their site density, activity and durability.

    • Ulrike I. Kramm
    • Lior Elbaz
    News & Views
  • Enantioselective synthesis of chiral cyclobutanes via direct cycloaddition of C–C single bonds with C=C double bonds has remained an unmet challenge. Now, a photoelectrocatalytic system enabling asymmetric dehydrogenative [2+2] cycloaddition of alkyl ketones and alkenes has been developed.

    • Yongsheng Tao
    • Cheng Huang
    • Qingquan Lu
    News & Views
  • With climate change concerns deepening, CO2 fixation pathways to produce value-added chemicals are currently of interest. Now, synthetic biology and machine learning help developing such a pathway across modules that have been tested in vivo in Escherichia coli for the production of acetyl coenzyme A.

    • Wei Xiong
    • Yanhe Ma
    News & Views
  • The search for novel biocatalysts for plastic degradation has recently become a hot topic. Now, multiple catalytic triads of well-known serine esterases were introduced into non-catalytic protein nanopores to enable the hydrolysis of PET nanoparticles.

    • Ren Wei
    • Uwe T. Bornscheuer
    News & Views
  • Electrocatalytic NOx reduction (NOxR) to ammonia has recently become an increasingly popular alternative to the more challenging N2 reduction. This Perspective critically assesses the possible ways NOxR could contribute to the ammonia economy and clarifies the necessary steps for a rigorous experimental protocol.

    • Jason John
    • Douglas R. MacFarlane
    • Alexandr N. Simonov
    Perspective
  • Direct CO2-to-C2+ and tandem CO2-to-CO and CO-to-C2+ electrocatalytic systems have been proposed as strategies for sustainable fuel and chemical synthesis. This Perspective considers the role of acidic CO2 gas on the cathodic microenvironment and local pH and draws connections between this and product selectivity in the electrochemical CO2 reduction reaction and the electrochemical CO reduction reaction, focusing on the competition between two major pathways: ethylene/ethanol and acetate.

    • Jung Yoon ‘Timothy’ Kim
    • Chase Sellers
    • Haotian Wang
    Perspective
  • Thanks to a unique set of properties, liquid metal catalysts provide advantages compared to traditional solid systems, yet their potential in heterogeneous catalysis has not been fully explored. This Perspective identifies some of the key advances in the field of liquid metal catalysis, discussing areas where progress is expected through further fundamental understanding as well as reactor engineering.

    • Syeda Saba Fatima
    • Karma Zuraiqi
    • Torben Daeneke
    Perspective
  • Suppressing the formation of oxide encapsulation layers on the active metal during pretreatment would lead to increased catalytic activity in supported catalysts, but controlling the strong metal-support interactions is challenging. Now it is shown that cleverly introducing TiOx patches onto Ru/MnO allows engineering effective oxide–oxide interface channels and avoids oxide overlayer formation, thus improving the performance of CO2 hydrogenation to produce CO.

    • Yuhua Liu
    • Wei Zhang
    News & Views
  • Diverse cytochrome P450s (CYPs) in nature can modify terpenoid scaffolds toward products with higher structural complexity and chemical diversity, but their discovery remains challenging. Now, an Escherichia coli -based gene screening platform enables high-throughput bacterial CYP screening, leading to efficient and diverse terpenoid biosynthesis.

    • Jianing Han
    • Sijin Li
    News & Views
  • A better understanding of the mechanism of electrochemical CO2 reduction should enable development of electrocatalysts that are more active and selective. Now, through an isotopic labelling strategy, it has been discovered that there are at least two types of active sites on Cu electrocatalysts, one responsible for converting CO2 to CO and another for further converting CO to useful C2+ products.

    • Yanwei Lum
    • Joel W. Ager
    News & Views
  • Selective electrochemical oxidation of ammonia provides an ideal pathway to synthesize hydrazine, but this process is outcompeted by a more favourable overoxidation to N2. A molecular ruthenium catalyst has now flipped the script, circumventing the thermodynamic challenges to selectively generate hydrazine.

    • Pablo Garrido-Barros
    • Ignacio Funes-Ardoiz
    News & Views
  • CRISPR-Cas9 is a major gene-editing tool that has attracted tremendous interdisciplinary efforts to ameliorate precise genome manipulation. Now, the pivotal structural features behind concerted double-stranded DNA cleavages by the Cas9 endonuclease have been captured through cryo-electron microscopy, laying the groundwork for improved Cas9 engineering.

    • Aakash Saha
    • Chinmai Pindi
    • Giulia Palermo
    News & Views
  • The selective oxidation of methane to methanol using O2 under mild conditions has been a challenge for decades. Now, this transformation is selectively achieved at ambient temperature with productivity as high as 67.4 μmol gcat−1 h−1 on a reduced phosphomolybdate catalyst, where H2 is required to keep the catalyst surface in a reduced state.

    • Liang Wang
    • Feng-Shou Xiao
    News & Views
  • Understanding the structure–performance relationships of heterogeneous catalysts is of fundamental importance for their deployment in industry. However, gaps exist between the conditions and catalytic materials commonly employed in laboratory studies and those encountered in practical reactors. This Perspective highlights the importance of recognizing such gaps, with the goal to inform the planning of academic research and maximize its impact.

    • Arik Beck
    • Vladimir Paunović
    • Jeroen A. van Bokhoven
    Perspective
  • The electrochemical conversion of carbon dioxide to high-value multicarbon products is very desirable, but also fraught with immense complexity in process design. A twist in tuning product yields in this reaction could be based on water activity.

    • Frank Marken
    News & Views
  • The electrochemical reduction of CO2 in strong acids is difficult. Now a strategy utilizing immobilized cations significantly enhances system stability and efficiency, opening up avenues for optimized CO2 conversion to C2 products.

    • Anthony Shoji Hall
    News & Views
  • The valorization of methane into oxygenated products has long intrigued the catalysis community, however, progress in the field is disparate and practical implementation remains elusive. This Review discusses recent advances in the area using performance indicators that reveal the gaps between academic investigations and industrial methane utilization and highlight possibilities for further developments.

    • Andrea Blankenship
    • Mikalai Artsiusheuski
    • Jeroen A. van Bokhoven
    Review Article
  • Enzymes are capable of controlling the reactivity and selectivity of catalytic mechanisms involving highly reactive intermediates. Now, flavine mononucleotide-dependent ene-reductases have been repurposed as photobiocatalysts for generating and taming unstable N-centred radicals, enabling their application in asymmetric radical C–N couplings.

    • Marc Garcia-Borràs
    News & Views
  • Progress in the field of photocatalytic CO2 reduction has been constrained by a lack of comparability between studies. This Perspective provides recommendations for best practices in the undertaking and reporting of experimental data in this promising research area.

    • Marcella Bonchio
    • Julien Bonin
    • Marc Robert
    Perspective