Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recent trends, current challenges and future prospects for syngas-free methane partial oxidation

Abstract

An efficient route for selective methane functionalization to liquid products, such as methanol, without intermediate syngas production is an integral part of the movement toward greener chemical and fuel production from currently underutilized resource streams. This challenging chemistry has motivated grand scientific efforts in the study of C–H activation and highly selective active site motifs, yet substantial limitations inhibit the translation of these concepts into practical processes. Here we assess recent developments in methane partial oxidation from thermochemical, photochemical, electrochemical, and non-thermal plasma literature published within the past five years using quantitative performance indicators. Ultimately, the field of methane valorization is unlikely to surpass limiting barriers on its current trajectory. Comprehensive design and innovation that target the improvement of multiple metrics (yield, productivity, product concentration) simultaneously with the incorporation of product protection schemes are paramount, as outlined in a roadmap for concepts with high potential for implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Four pillars of a methane partial oxidation scheme.
Fig. 2: General mechanisms for methane partial oxidation.
Fig. 3: Thermal and thermocatalytic methane partial oxidation.
Fig. 4: Photochemical, plasma-assisted and electrochemical methane partial oxidation.
Fig. 5: Comparison of methane partial oxidation for all conversion modes.
Fig. 6: Status of current approaches to methane partial oxidation.
Fig. 7: Roadmap for high-potential methane partial oxidation processes.

Similar content being viewed by others

References

  1. Vogel, F. Chasing after methane’s ultra-emitters. Science 375, 490–491 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    Article  CAS  Google Scholar 

  3. Lawton, T. J. & Rosenzweig, A. C. Methane-oxidizing enzymes: an upstream problem in biological gas-to-liquids conversion. J. Am. Chem. Soc. 138, 9327–9340 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, V. C. C. et al. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117, 8574–8621 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Latimer, A. A., Kakekhani, A., Kulkarni, A. R. & Norskov, J. K. Direct methane to methanol: the selectivity-conversion limit and design strategies. ACS Catal. 8, 6894–6907 (2018).

    Article  CAS  Google Scholar 

  6. Ahlquist, M., Nielsen, R. J., Periana, R. A. & Goddard Iii, W. A. Product protection, the key to developing high performance methane selective oxidation catalysts. J. Am. Chem. Soc. 131, 17110–17115 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Mlekodaj, K., Lemishka, M., Sklenak, S., Dedecek, J. & Tabor, E. Dioxygen splitting at room temperature over distant binuclear transition metal centers in zeolites for direct oxidation of methane to methanol. Chem. Commun. 57, 3472–3475 (2021).

    Article  CAS  Google Scholar 

  8. Tabor, E. et al. Dioxygen dissociation over man-made system at room temperature to form the active alpha-oxygen for methane oxidation. Sci. Adv. 6, eaaz9776 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, S. H., Kang, J. K. & Park, E. D. Continuous methanol synthesis directly from methane and steam over Cu(II)-exchanged mordenite. Korean J. Chem. Eng. 35, 2145–2149 (2018).

    Article  CAS  Google Scholar 

  11. Jovanovic, Z. R. et al. Oxidation of methane to methanol over Cu-exchanged zeolites: Scientia gratia scientiae or paradigm shift in natural gas valorization? J. Catal. 385, 238–245 (2020).

    Article  CAS  Google Scholar 

  12. Jocz, J. N., Medford, A. J. & Sievers, C. Thermodynamic limitations of the catalyst design space for methanol production from methane. ChemCatChem 11, 593–600 (2019).

    Article  CAS  Google Scholar 

  13. Artsiusheuski, M. A., Verel, R., van Bokhoven, J. A. & Sushkevich, V. L. Methane transformation over copper-exchanged zeolites: from partial oxidation to C–C coupling and formation of hydrocarbons. ACS Catal. 11, 12543–12556 (2021).

    Article  CAS  Google Scholar 

  14. Sushkevich, V. L. & van Bokhoven, J. A. Effect of Brønsted acid sites on the direct conversion of methane into methanol over copper-exchanged mordenite. Catal. Sci. Technol. 8, 4141–4150 (2018).

    Article  CAS  Google Scholar 

  15. Dyballa, M. et al. Zeolite surface methoxy groups as key intermediates in the stepwise conversion of methane to methanol. ChemCatChem 11, 5022–5026 (2019).

    Article  CAS  Google Scholar 

  16. Yamasaki, T. et al. Low-temperature activation of methane with nitric oxide and formation of hydrogen cyanide over an alumina-supported platinum catalyst. ACS Catal. 11, 14660–14668 (2021).

    Article  CAS  Google Scholar 

  17. Pappas, D. K. et al. Methane to methanol: structure activity relationships for Cu-CHA. J. Am. Chem. Soc. 139, 14961–14975 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Narsimhan, K., Iyoki, K., Dinh, K. & Roman-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016). Demonstration of the catalytic conversion of methane to methanol in a gas–solid mode enabled by co-feeding water along with methane and oxygen over copper-exchanged zeolites.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirayama, A. et al. Catalytic oxidation of methane to methanol over Cu-CHA with molecular oxygen. Catal. Sci. Technol. 11, 6217–6224 (2021).

    Article  CAS  Google Scholar 

  20. Vargheese, V., Kobayashi, Y. & Oyama, S. T. The direct partial oxidation of methane to dimethyl ether over Pt/Y2O3catalysts using an NO/O2 shuttle. Angew. Chem. Int. Ed. 59, 16644–16650 (2020).

    Article  CAS  Google Scholar 

  21. Vargheese, V. et al. The direct molecular oxygen partial oxidation of CH4 to dimethyl ether without methanol formation over a Pt/Y2O3 catalyst using an NO/NO2 oxygen atom shuttle. J. Catal. 389, 352–365 (2020).

    Article  CAS  Google Scholar 

  22. Ghampson, I. T. et al. Methane selective oxidation on metal oxide catalysts at low temperatures with O2 using an NO/NO2 oxygen atom shuttle. J. Catal. 408, 401–412 (2022).

    Article  CAS  Google Scholar 

  23. Dinh, K. T., Sullivan, M. M., Serna, P., Meyer, R. J. & Roman-Leshkov, Y. Breaking the selectivity-conversion limit of partial methane oxidation with tandem heterogeneous catalysts. ACS Catal. 11, 9262–9270 (2021). A concept for the tandem catalytic conversion of methane to methanol with subsequent alkylation of benzene to toluene using a mixture of small-pore copper-exchanged zeolites and larger-pore zeolite.

  24. Lange, J. P. In Sustainable Strategies for the Upgrading of Natural Gas: Fundamentals, Challenges, and Opportunities (eds. Derouane, E. G. et al.) 51–83 (NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 191, 2005).

  25. Periana, R. A. et al. Perspectives on some challenges and approaches for developing the next generation of selective, low temperature, oxidation catalysts for alkane hydroxylation based on the CH activation reaction. J. Mol. Catal. A 220, 7–25 (2004).

    Article  CAS  Google Scholar 

  26. Bunting, R. J., Rice, P. S., Thompson, J. & Hu, P. Investigating the innate selectivity issues of methane to methanol: consideration of an aqueous environment. Chem. Sci. 12, 4443–4449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jin, Z. et al. Hydrophobic zeolite modification for in situ peroxide formation in methane oxidation to methanol. Science 367, 193–197 (2020). A nanoreactor concept involving zeolite-encapsulated AuPd nanoparticles with a hydrophobic coating generating hydrogen peroxide in situ near methane activation sites, allowing high methanol selectivity at larger extents of methane conversion.

  28. Periana, R. A. et al. Amercury-catalyzed, high-yield system for the oxidation of methane to methanol. Science 259, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Periana, R. A. et al. Platinum catalysts for the high-yield oxidation of methane to a methanol derivative. Science 280, 560–564 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Michalkiewicz, B. Methane conversion to methanol in condensed phase. Kinet. Catal. 44, 801–805 (2003).

    Article  CAS  Google Scholar 

  31. Gang, X., Zhu, Y. M., Birch, H., Hjuler, H. A. & Bjerrum, N. J. Iodine as catalyst for the direct oxidation of methane to methyl sulfates in oleum. Appl Catal. A 261, 91–98 (2004).

    Article  CAS  Google Scholar 

  32. Zimmermann, T., Soorholtz, M., Bilke, M. & Schüth, F. Selective methane oxidation catalyzed by platinum salts in oleum at turnover frequencies of large-scale industrial processes. J. Am. Chem. Soc. 138, 12395–12400 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Conley, B. L. et al. Design and study of homogeneous catalysts for the selective, low temperature oxidation of hydrocarbons. J. Mol. Catal. A 251, 8–23 (2006).

    Article  CAS  Google Scholar 

  34. Blankenship, A. N., Ravi, M. & van Bokhoven, J. A. Esterification product protection strategies for direct and selective methane conversion. Chimia 75, 305–310 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Noceti, R. P., Taylor, C. E. & D’Este, J. R. Photocatalytic conversion of methane. Catal. Today 33, 199–204 (1997).

    Article  CAS  Google Scholar 

  36. Li, X. Y., Wang, C. & Tang, J. W. Methane transformation by photocatalysis. Nat. Rev. Mater. 7, 617–632 (2022).

  37. Li, Q., Ouyang, Y. X., Li, H. L., Wang, L. B. & Zeng, J. Photocatalytic conversion of methane: recent advancements and prospects. Angew. Chem. Int. Ed. 61, e202108069 (2022).

  38. Ohkubo, K. & Hirose, K. Light-driven C–H oxygenation of methane into methanol and formic acid by molecular oxygen using a perfluorinated solvent. Angew. Chem. Int Ed. 57, 2126–2129 (2018). The photochemical conversion of methane with a high product yield enabled by a biphasic solvent system, in which the product is sequestered into an oxidant-poor phase to prevent overoxidation.

  39. Liebov, N. S. et al. Selective photo-oxygenation of light alkanes using iodine oxides and chloride. ChemCatChem 11, 5045–5054 (2019).

    Article  CAS  Google Scholar 

  40. Sun, H. L. et al. Ultra-stable molecular interface SiW12Ox/TiO2 catalyst derived from keggin-type polyoxometalates for photocatalytic conversion of methane to oxygenates. ChemCatChem 14, e202200001 (2022).

  41. Wu, X. Y. et al. Noble-metal-free dye-sensitized selective oxidation of methane to methanol with green light (550 nm). Nano Res. 14, 4584–4590 (2021).

    Article  CAS  Google Scholar 

  42. An, B. et al. Direct photo-oxidation of methane to methanol over a mono-iron hydroxyl site. Nat. Mater. 21, 932–938 (2022). A flow reaction concept for photocatalytic methane conversion using iron-containing MOFs with relatively high product concentrations and activity using a molecular oxygen oxidant.

  43. Feng, G. H. et al. Solar driven efficient direct conversion of methane to multicarbon oxygenates. J. Mater. Chem. A 10, 7856–7868 (2022).

    Article  CAS  Google Scholar 

  44. Luo, L. et al. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 144, 740–750 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Sakata, Y., Hayashi, T., Yasunaga, R., Yanaga, N. & Imamura, H. Remarkably high apparent quantum yield of the overall photocatalytic H2O splitting achieved by utilizing Zn ion added Ga2O3 prepared using dilute CaCl2 solution. Chem. Commun. 51, 12935–12938 (2015).

    Article  CAS  Google Scholar 

  46. Takata, T. et al. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 581, 411–414 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Zhao, Y. et al. A hydrogen farm strategy for scalable solar hydrogen production with particulate photocatalysts. Angew. Chem. Int. Ed. 59, 9653–9658 (2020).

    Article  CAS  Google Scholar 

  48. Han, B., Wei, W., Li, M. J., Sun, K. & Hu, Y. H. A thermo-photo hybrid process for steam reforming of methane: highly efficient visible light photocatalysis. Chem. Commun. 55, 7816–7819 (2019).

    Article  CAS  Google Scholar 

  49. Lopez-Martin, A., Caballero, A. & Colon, G. Photochemical methane partial oxidation to methanol assisted by H2O2. J. Photochem. Photobiol. A 349, 216–223 (2017).

    Article  CAS  Google Scholar 

  50. Indarto, A. A review of direct methane conversion to methano by dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insul. 15, 1038–1043 (2008).

    Article  CAS  Google Scholar 

  51. Kim, H. H., Teramoto, Y., Ogata, A., Takagi, H. & Nanba, T. Plasma catalysis for environmental treatment and energy applications. Plasma Chem. Plasma Process. 36, 45–72 (2016).

    Article  Google Scholar 

  52. Puliyalil, H., Jurkovic, D. L., Dasireddy, V. D. B. C. & Likozar, B. A review of plasma-assisted catalytic conversion of gaseous carbon dioxide and methane into value-added platform chemicals and fuels. RSC Adv. 8, 27481–27508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bogaerts, A. & Neyts, E. C. Plasma technology: an emerging technology for energy storage. ACS Energy Lett. 3, 1013–1027 (2018).

    Article  CAS  Google Scholar 

  54. Ollegott, K., Wirth, P., Oberste-Beulmann, C., Awakowicz, P. & Muhler, M. Fundamental properties and applications of dielectric barrier discharges in plasma-catalytic processes at atmospheric pressure. Chem. Ing. Tech. 92, 1542–1558 (2020).

    Article  CAS  Google Scholar 

  55. Zhang, Y. R., Neyts, E. C. & Bogaerts, A. Influence of the material dielectric constant on plasma generation inside catalyst pores. J. Phys. Chem. C 120, 25923–25934 (2016).

    Article  CAS  Google Scholar 

  56. Wang, W. Z., Kim, H. H., Van Laer, K. & Bogaerts, A. Streamer propagation in a packed bed plasma reactor for plasma catalysis applications. Chem. Eng. J. 334, 2467–2479 (2018).

    Article  CAS  Google Scholar 

  57. Loenders, B., Engelmann, Y. & Bogaerts, A. Plasma-catalytic partial oxidation of methane on Pt(111): a microkinetic study on the role of different plasma species. J. Phys. Chem. C 125, 2966–2983 (2021).

    Article  CAS  Google Scholar 

  58. Jiang, J. K. & Bruggeman, P. J. Investigation of the mechanisms underpinning plasma-catalyst interaction for the conversion of methane to oxygenates. Plasma Chem. Plasma Process. 42, 689–707 (2022).

  59. Yan, C. et al. Recent advances in plasma catalysis. J. Phys. Chem. C 126, 9611–9614 (2022).

    Article  CAS  Google Scholar 

  60. Lee, H. & Kim, D. H. Direct methanol synthesis from methane in a plasma-catalyst hybrid system at low temperature using metal oxide-coated glass beads. Sci. Rep. 8, 9956 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Indarto, A. Partial oxidation of methane to methanol with nitrogen dioxide in dielectric barrier discharge plasma: experimental and molecular modeling. Plasma Sources Sci. Technol. 25, 025002 (2016).

  62. Hinde, P., Demidyuk, V., Gkelios, A. & Tipton, C. Plasma catalysis: a review of the interdisciplinary challenges faced realising the potential of plasma catalysis on a commercial scale. Johnson Matthey Technol. Rev. 64, 138–147 (2020).

    Article  CAS  Google Scholar 

  63. Fathollahi, P. et al. Selective oxidation of methane to methanol by NTP plasma: the effect of power and oxygen on conversion and selectivity. J. Electrostat. 112, 103594 (2021). Plasma-assisted conversion of methane using copper electrodes that result in better energy efficiency relative to product yield.

  64. Larkin, D. W., Lobban, L. L. & Mallinson, R. G. The direct partial oxidation of methane to organic oxygenates using a dielectric barrier discharge reactor as a catalytic reactor analog. Catal. Today 71, 199–210 (2001).

    Article  CAS  Google Scholar 

  65. Larkin, D. W., Zhou, L. M., Lobban, L. L. & Mallinson, R. G. Product selectivity control and organic oxygenate pathways from partial oxidation of methane in a silent electric discharge reactor. Ind. Eng. Chem. Res. 40, 5496–5506 (2001).

    Article  CAS  Google Scholar 

  66. Nozaki, T., Hattori, A. & Okazaki, K. Partial oxidation of methane using a microscale non-equilibrium plasma reactor. Catal. Today 98, 607–616 (2004).

    Article  CAS  Google Scholar 

  67. Nozaki, T., Agiral, A., Yuzawa, S., Gardeniers, J. G. E. H. & Okazaki, K. A single step methane conversion into synthetic fuels using microplasma reactor. Chem. Eng. J. 166, 288–293 (2011).

    Article  CAS  Google Scholar 

  68. Okumoto, M. & Mizuno, A. Conversion of methane for higher hydrocarbon fuel synthesis using pulsed discharge plasma method. Catal. Today 71, 211–217 (2001).

    Article  CAS  Google Scholar 

  69. Bagherzadeh Mostaghimi, A. H., Al-Attas, T. A., Kibria, M. G. & Siahrostami, S. A review on electrocatalytic oxidation of methane to oxygenates. J. Mater. Chem. A 8, 15575–15590 (2020).

    Article  CAS  Google Scholar 

  70. Arminio-Ravelo, J. A. & Escudero-Escribano, M. Strategies toward the sustainable electrochemical oxidation of methane to methanol. Curr. Opin. Green. Sustain. Chem. 30, 100489 (2021).

    Article  CAS  Google Scholar 

  71. Wang, Q., Kan, M., Han, Q. & Zheng, G. Electrochemical methane conversion. Small Struct. 2, 2100037 (2021).

    Article  CAS  Google Scholar 

  72. Periana, R. A. et al. In Studies in Surface Science and Catalysis Vol. 81 (eds. Curry-Hyde, H. E. & Howe, R. F.) 533–544 (Elsevier, 1994).

  73. Muehlhofer, M., Strassner, T. & Herrmann, W. A. New catalyst systems for the catalytic conversion of methane into methanol. Angew. Chem. Int. Ed. 41, 1745–1747 (2002).

    Article  CAS  Google Scholar 

  74. Seki, Y., Min, J. S., Misono, M. & Mizuno, N. Reaction mechanism of oxidation of methane with hydrogen peroxide catalyzed by 11-molybdo-1-vanadophosphoric acid catalyst precursor. J. Phys. Chem. B 104, 5940–5944 (2000).

    Article  CAS  Google Scholar 

  75. Yuan, S. et al. Conversion of methane into liquid fuels—bridging thermal catalysis with electrocatalysis. Adv. Energy Mater. 10, 2002154 (2020).

    Article  CAS  Google Scholar 

  76. Sher Shah, M. S. A. et al. Catalytic oxidation of methane to oxygenated products: recent advancements and prospects for electrocatalytic and photocatalytic conversion at low temperatures. Adv. Sci. 7, 2001946 (2020).

    Article  CAS  Google Scholar 

  77. Lewis, R. J. et al. The direct synthesis of H2O2 and selective oxidation of methane to methanol using HZSM-5 supported AuPd catalysts. Catal. Lett. 149, 3066–3075 (2019).

    Article  CAS  Google Scholar 

  78. Natinsky, B. S., Lu, S., Copeland, E. D., Quintana, J. C. & Liu, C. Solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol. ACS Cent. Sci. 5, 1584–1590 (2019). A nanowire electrode is used to spatially separate incompatible process steps in electrochemical methane conversion to prevent the active metalloradical deactivation by oxygen.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lange, J.-P., Sushkevich, V. L., Knorpp, A. J. & van Bokhoven, J. A. Methane-to-methanol via chemical looping: economic potential and guidance for future research. Ind. Eng. Chem. Res. 58, 8674–8680 (2019).

    Article  CAS  Google Scholar 

  80. Lange, J.-P. Catalysis for biorefineries – performance criteria for industrial operation. Catal. Sci. Technol. 6, 4759–4767 (2016).

    Article  CAS  Google Scholar 

  81. Soucie, H., Elam, M. & Mustain, W. E. Practical assessment for at-scale electrochemical conversion of methane to methanol. ACS Energy Lett. 8, 1218–1229 (2023).

    Article  CAS  Google Scholar 

  82. Shan, J. J., Li, M. W., Allard, L. F., Lee, S. S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Lee, H. W. et al. Pt black catalyzed methane oxidation to methyl bisulfate in H2SO4-SO3. J. Catal. 374, 230–236 (2019).

    Article  CAS  Google Scholar 

  84. Zhu, K. X. et al. Highly efficient conversion of methane to formic acid under mild conditions at ZSM-5-confined Fe-sites. Nano Energy 82, 105718 (2021).

  85. Gorky, F., Nambo, A. & Carreon, M. L. Cold plasma-metal organic framework (MOF)-177 breathable system for atmospheric remediation. J. CO2 Util. 51, 101642 (2021).

  86. Sarno, M., Ponticorvo, E., Funicello, N. & De Pasquale, S. Methane electrochemical oxidation at low temperature on Rh single atom/NiO/V2O5 nanocomposite. Appl. Catal. A 603, 117746 (2020).

    Article  CAS  Google Scholar 

  87. Deng, J. et al. Ambient methane functionalization initiated by electrochemical oxidation of a vanadium (V)-oxo dimer. Nat. Commun. 11, 3686 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from ETH Zurich, the Paul Scherrer Institut and the Swiss National Science Foundation (project 200021_178943).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen A. van Bokhoven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Maria Carreon, Daniel Shantz and Jong Hyeok Park for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–2, Tables 1–8, Figs. 1–5 and references.

Source data

Source Data Fig. 1

Source data for performance comparison in figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blankenship, A., Artsiusheuski, M., Sushkevich, V. et al. Recent trends, current challenges and future prospects for syngas-free methane partial oxidation. Nat Catal 6, 748–762 (2023). https://doi.org/10.1038/s41929-023-01000-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01000-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing