Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Identifying and avoiding dead ends in the characterization of heterogeneous catalysts at the gas–solid interface

Abstract

The goal of catalyst characterization is to understand the structure and properties of a catalytic material and how they ultimately affect catalytic performance. However, pitfalls in the design of characterization experiments can impede their successful interpretation and the acquisition of relevant insights. Reducing the complexity of characterization experiments through simplified model conditions and samples causes gaps between the characterization experiment and the applied catalytic process. These gaps have been the subject of debate for decades. However, often too little consideration is given to these aspects, and correlations between the actual catalytic process and models should be made with great caution. In this Perspective, we discuss the intense influence of the catalytic reaction, the catalyst structure and the applied conditions on each other. Shedding light on the general gaps that exist in the characterization of heterogeneous catalysis has allowed us to establish a set of guidelines that may ultimately lead to the successful determination of structure–performance relationships.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Differences in the characterization of heterogeneous catalysis of different complexity.
Fig. 2: Surface reactions in Langmuir–Hinshelwood approximation.
Fig. 3: Correlation of spectroscopic and catalytic data.
Fig. 4: Oscillating catalyst structures.
Fig. 5: Structure and kinetic dependence on the applied pressure and cell design.
Fig. 6: Gaps in our understanding of heterogeneous catalysis at the gas–solid interface.

Similar content being viewed by others

References

  1. Kalz, K. F. et al. Future challenges in heterogeneous catalysis: understanding catalysts under dynamic reaction conditions. ChemCatChem 9, 17–29 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bond, G. C. The use of kinetics in evaluating mechanisms in heterogeneous catalysis. Catal. Rev. 50, 532–567 (2008).

    Article  CAS  Google Scholar 

  3. Schlögl, R. Heterogeneous catalysis—still magic or already science? Angew. Chem. Int. Ed. Engl. 32, 381–383 (1993).

    Article  Google Scholar 

  4. Haag, W. O., Lago, R. M. & Weisz, P. B. The active site of acidic aluminosilicate catalysts. Nature 309, 589–591 (1984).

    Article  CAS  Google Scholar 

  5. Bañares, M. A. Operando spectroscopy: the knowledge bridge to assessing structure–performance relationships in catalyst nanoparticles. Adv. Mater. 23, 5293–5301 (2011).

    Article  PubMed  Google Scholar 

  6. Stoltze, P. & Nørskov, J. K. Bridging the ‘pressure gap’ between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55, 2502–2505 (1985).

    Article  CAS  PubMed  Google Scholar 

  7. Freund, H. J. et al. Bridging the pressure and materials gaps between catalysis and surface science: clean and modified oxide surfaces. Top. Catal. 15, 201–209 (2001).

    Article  CAS  Google Scholar 

  8. Imbihl, R., Behm, R. J. & Schlögl, R. Bridging the pressure and material gap in heterogeneous catalysis. Phys. Chem. Chem. Phys. 9, 3459 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Horrocks, W. D. & Taylor, R. C. Infrared spectroscopic study of derivatives of cobalt tricarbonyl nitrosyl. Inorg. Chem. 2, 723–727 (1963).

    Article  CAS  Google Scholar 

  10. Van der Slot, S. C., Duran, J., Luten, J., Kamer, P. C. J. & Van Leeuwen, P. W. N. M. Rhodium-catalyzed hydroformylation and deuterioformylation with pyrrolyl-based phosphorus amidite ligands: influence of electronic ligand properties. Organometallics 21, 3873–3883 (2002).

    Article  Google Scholar 

  11. Morandi, B. & Carreira, E. M. Iron-catalyzed cyclopropanation with trifluoroethylamine hydrochloride and olefins in aqueous media: in situ generation of trifluoromethyl diazomethane. Angew. Chem. 122, 950–953 (2010).

    Article  Google Scholar 

  12. Reece, C. & Madix, R. J. Moving from fundamental knowledge of kinetics and mechanisms on surfaces to prediction of catalyst performance in reactors. ACS Catal. 11, 3048–3066 (2021).

    Article  CAS  Google Scholar 

  13. Nørskov, J. K., Studt, F., Abild‐Pedersen, F. & Bligaard, T. Fundamental Concepts in Heterogeneous Catalysis (Wiley, 2014).

  14. Zakem, G., Ro, I., Finzel, J. & Christopher, P. Support functionalization as an approach for modifying activation entropies of catalytic reactions on atomically dispersed metal sites. J. Catal. 404, 883–896 (2021).

    Article  CAS  Google Scholar 

  15. Bond, G. C. & Wells, P. B. The hydrogenation of acetylene. I. The reaction of acetylene with hydrogen catalyzed by alumina-supported platinum. J. Catal. 4, 211–219 (1965).

    Article  CAS  Google Scholar 

  16. Ro, I. et al. Bifunctional hydroformylation on heterogeneous Rh-WOx pair site catalysts. Nature 609, 287–292 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Kopelent, R. et al. Catalytically active and spectator Ce3+ in ceria-supported metal catalysts. Angew. Chem. Int. Ed. 54, 8728–8731 (2015).

    Article  CAS  Google Scholar 

  18. Mars, P. & van Krevelen, D. W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954).

    Article  CAS  Google Scholar 

  19. Thrane, J. et al. Methanol‐assisted autocatalysis in catalytic methanol synthesis. Angew. Chem. Int. Ed. 59, 18189–18193 (2020).

    Article  CAS  Google Scholar 

  20. Lockemeyer, J. R. & Lohr, T. L. Ethylene oxide catalysis under commercial conditions—a guide for researchers. ChemCatChem 15, e202201511 (2023).

    Article  CAS  Google Scholar 

  21. Timoshenko, J. & Roldan Cuenya, B. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy. Chem. Rev. 121, 882–961 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Meunier, F. C. The design and testing of kinetically-appropriate operando spectroscopic cells for investigating heterogeneous catalytic reactions. Chem. Soc. Rev. 39, 4602–4614 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Hannagan, R. T. et al. First-principles design of a single-atom–alloy propane dehydrogenation catalyst. Science 372, 1444–1447 (2021).

    Article  CAS  Google Scholar 

  24. Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M. & Madix, R. J. Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nat. Catal. 1, 852–859 (2018).

    Article  CAS  Google Scholar 

  25. Graham, M. D. et al. Effects of boundaries on pattern formation: catalytic oxidation of CO on platinum. Science 264, 80–82 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Ertl, G. Non-linear dynamics: Oscillatory kinetics and spatio-temporal pattern formation. In Handbook of Heterogeneous Catalysis (eds Ertl, G. et al.) 1492–1516 (Wiley-VCH, 2008).

  27. Rotermund, H. H., Engel, W., Kordesch, M. & Ertl, G. Imaging of spatio-temporal pattern evolution during carbon monoxide oxidation on platinum. Nature 343, 355–357 (1990).

    Article  CAS  Google Scholar 

  28. Dumesic, J.A., Huber, G.W. and Boudart, M. Principles of heterogeneous catalysis. In Handbook of Heterogeneous Catalysis (eds Ertl, G. et al.) 1-15 (Wiley-VCH, 2008).

  29. Gnutzmann, V. & Vogel, W. Structural sensitivity of the standard Pt/SiO2 catalyst EuroPt-1 to H2 and O2 exposure by in situ X-ray diffraction. J. Phys. Chem. 94, 4991–4997 (1990).

    Article  CAS  Google Scholar 

  30. Li, W. X. et al. Oxidation of Pt(110). Phys. Rev. Lett. 93, 146104 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Ackermann, M. D. et al. Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hendriksen, B. L. M. & Frenken, J. W. M. CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys. Rev. Lett. 89, 046101 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Campbell, C. T., Ertl, G., Kuipers, H. & Segner, J. A molecular beam study of the catalytic oxidation of CO on a Pt(111) surface. J. Chem. Phys. 73, 5862–5873 (1980).

    Article  CAS  Google Scholar 

  34. Li, W. X. & Hammer, B. Reactivity of a gas/metal/metal-oxide three-phase boundary: CO oxidation at the Pt(111)-c(4×2)-2CO/α-PtO2 phase boundary. Chem. Phys. Lett. 409, 1–7 (2005).

  35. Casapu, M. et al. Origin of the normal and inverse hysteresis behavior during CO oxidation over Pt/Al2O3. ACS Catal. 7, 343–355 (2017).

    Article  CAS  Google Scholar 

  36. Somorjai, G. A., York, R. L., Butcher, D. & Park, J. Y. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10−3 Torr) to high pressure (>10−3 Torr) to liquid interfaces. Phys. Chem. Chem. Phys. 9, 3500–3513 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Vang, R. T., Lægsgaard, E. & Besenbacher, F. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Phys. Chem. Chem. Phys. 9, 3460–3469 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Beck, A. et al. Following the structure of copper–zinc–alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 4, 488–497 (2021).

    Article  CAS  Google Scholar 

  40. Amann, P. et al. The state of zinc in methanol synthesis over a Zn/ZnO/Cu(211) model catalyst. Science 376, 603–608 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Jung, K. D., Joo, O. S. & Han, S. H. Structural change of Cu/ZnO by reduction of ZnO in Cu/ZnO with methanol. Catal. Lett. 68, 49–54 (2000).

    Article  CAS  Google Scholar 

  42. Castner, D. G. & Somorjai, G. A. LEED and thermal desorption studies of small molecules (H2, O2, CO, CO2, NO, C2H4, C2H2 and C) chemisorbed on the stepped rhodium (755) and (331) surfaces. Surf. Sci. 83, 60–82 (1979).

    Article  CAS  Google Scholar 

  43. Yates, J. T., Williams, E. D. & Weinberg, W. H. Does chemisorbed carbon monoxide dissociate on rhodium? Surf. Sci. 91, 562–570 (1980).

    Article  CAS  Google Scholar 

  44. Ren, D. M. & Liu, W. A study of chemisorption behavior of carbon monoxide on rhodium surfaces. Surf. Sci. 232, 316–322 (1990).

    Article  CAS  Google Scholar 

  45. Schumann, M., Grunwaldt, J., Jensen, A. D. & Christensen, J. M. Investigations of mechanism, surface species and support effects in CO hydrogenation over Rh. J. Catal. 414, 90–100 (2022).

    Article  CAS  Google Scholar 

  46. Degerman, D. et al. Operando observation of oxygenated intermediates during CO hydrogenation on Rh single crystals. J. Am. Chem. Soc. 144, 7038–7042 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Newton, M. A. et al. On isothermality in some commonly used plug flow reactors for X-ray based investigations of catalysts. Catal. Sci. Technol. 9, 3081–3089 (2019).

    Article  CAS  Google Scholar 

  48. Grunwaldt, J.-D. D., Caravati, M., Hannemann, S. & Baiker, A. X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies. Phys. Chem. Chem. Phys. 6, 3037–3047 (2004).

    Article  CAS  Google Scholar 

  49. Kau, L. S., Hodgson, K. O. & Solomon, E. I. X-ray absorption edge and EXAFS study of the copper sites in zinc oxide methanol synthesis catalysts. J. Am. Chem. Soc. 111, 7103–7109 (1989).

    Article  CAS  Google Scholar 

  50. Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Crystallogr. 41, 822–824 (2008).

    Article  CAS  Google Scholar 

  51. Maurer, F. et al. Spatiotemporal investigation of the temperature and structure of a Pt/CeO2 oxidation catalyst for CO and hydrocarbon oxidation during pulse activation. Ind. Eng. Chem. Res. 60, 6662–6675 (2021).

    Article  CAS  Google Scholar 

  52. Gänzler, A. M. et al. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts. Angew. Chem. Int. Ed. 56, 13078–13082 (2017).

    Article  Google Scholar 

  53. Blomberg, S., Zhou, J., Gustafson, J., Zetterberg, J. & Lundgren, E. 2D and 3D imaging of the gas phase close to an operating model catalyst by planar laser induced fluorescence. J. Phys. Condens. Matter 28, 453002 (2016).

    Article  PubMed  Google Scholar 

  54. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  55. Frey, H., Beck, A., Huang, X., van Bokhoven, J. A. & Willinger, M. G. Dynamic interplay between metal nanoparticles and oxide support under redox conditions. Science 376, 982–987 (2022).

    Article  CAS  PubMed  Google Scholar 

  56. Langmuir, I. Chemical reactions at low pressure. J. Am. Chem. Soc. 37, 1139–1167 (1915).

    Article  CAS  Google Scholar 

  57. Langmuir, I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2 = 2CO2 and 2H2 + O2 = 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).

    Article  Google Scholar 

  58. Park, G. B. et al. The kinetics of elementary thermal reactions in heterogeneous catalysis. Nat. Rev. Chem. 3, 723–732 (2019).

    Article  Google Scholar 

  59. Freund, H. J. Model studies in heterogeneous catalysis. Chem. Eur. J. 16, 9384–9397 (2010).

    Article  CAS  PubMed  Google Scholar 

  60. Goodman, D. W. Model studies in catalysis using surface science probes. Chem. Rev. 95, 523–536 (1995).

    Article  CAS  Google Scholar 

  61. Copéret, C. et al. Bridging the gap between industrial and well-defined supported catalysts. Angew. Chem. Int. Ed. 57, 6398–6440 (2018).

    Article  Google Scholar 

  62. Losch, P. et al. Modular Pd/zeolite composites demonstrating the key role of support hydrophobic/hydrophilic character in methane catalytic combustion. ACS Catal. 9, 4742–4753 (2019).

    Article  CAS  Google Scholar 

  63. Bondar, P. G. et al. Catalyst for the synthesis of methanol and method for preparing same. US patent 4,107,089A (1977).

  64. Grunwaldt, J.-D., Molenbroek, A., Topsøe, N.-Y., Topsøe, H. & Clausen, B. In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194, 452–460 (2000).

    Article  CAS  Google Scholar 

  65. Kandemir, T. et al. In situ study of catalytic processes: neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure. Angew. Chem. Int. Ed. 52, 5166–5170 (2013).

    Article  CAS  Google Scholar 

  66. Zander, S. et al. The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew. Chem. Int. Ed. 52, 6536–6540 (2013).

    Article  CAS  Google Scholar 

  67. Karim, W. et al. State-of-the-art nanofabrication in natalysis. Chimia 71, 160–169 (2017).

    Article  CAS  PubMed  Google Scholar 

  68. Gordon, C. P. et al. Efficient epoxidation over dinuclear sites in titanium silicalite-1. Nature 586, 708–713 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Österlund, L. et al. Bridging the pressure gap in surface science at the atomic level: H/Cu(110). Phys. Rev. Lett. 86, 460–463 (2001).

    Article  PubMed  Google Scholar 

  70. Beck, A. et al. The extent of platinum-induced hydrogen spillover on cerium dioxide. ACS Nano 17, 1091–1099 (2023).

    Article  CAS  Google Scholar 

  71. Nettesheim, S., von Oertzen, A., Rotermund, H. H. & Ertl, G. Reaction diffusion patterns in the catalytic CO‐oxidation on Pt(110): front propagation and spiral waves. J. Chem. Phys. 98, 9977–9985 (1993).

    Article  CAS  Google Scholar 

  72. Schumann, M. et al. Rationalizing an unexpected structure sensitivity in heterogeneous catalysis—CO hydrogenation over Rh as a case study. ACS Catal. 11, 5189–5201 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

A.B. and J.A.v.B. acknowledge the SNSF project 200021_178943 for financial support. We thank M. Schönberg for her comments on the paper.

Author information

Authors and Affiliations

Authors

Contributions

A.B. and J.A.v.B. conceptualized and wrote the first draft of the paper. A.B., V.P. and J.A.v.B. conceptualized and prepared the figures. V.P. revised the initial draft and concept. All authors contributed to the final revisions of the paper.

Corresponding authors

Correspondence to Arik Beck or Jeroen A. van Bokhoven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, A., Paunović, V. & van Bokhoven, J.A. Identifying and avoiding dead ends in the characterization of heterogeneous catalysts at the gas–solid interface. Nat Catal 6, 873–884 (2023). https://doi.org/10.1038/s41929-023-01027-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-01027-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing