Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Best practices for experiments and reporting in photocatalytic CO2 reduction

Abstract

Visible-light-driven conversion of CO2 to fuels and valuable compounds has experienced tremendous activity in recent years, aiming at storing solar energy into chemical bonds using CO2 as a renewable feedstock, ultimately at massive scale. Despite these efforts, processes and catalytic systems are still at an early stage of development, with fundamental mechanistic challenges as pre-requisites for device design. In this context, collective efforts currently necessitate the exploration of a variety of approaches. On the other hand, an alignment of practices is required to ensure robustness, precision and accuracy of the results, as well as shared metrics and tools for advancing our understanding of the necessary processes. This Perspective aims to provide guidelines and a framework towards these objectives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Scheme of a typical photochemical reactor.
Fig. 2: Emission spectra of various light sources.
Fig. 3: Typical gas chromatogram and mass spectrum of gaseous products from CO2 reduction.
Fig. 4: Flowchart for properly conducting light-driven CO2 catalytic reduction.

Similar content being viewed by others

References

  1. Burdyny, T. & Smith, W. A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ. Sci. 12, 1442–1453 (2019).

    Article  CAS  Google Scholar 

  2. Morikawa, T., Sato, S., Sekizawa, K., Suzuki, T. M. & Arai, T. Solar-driven CO2 reduction using a semiconductor/molecule hybrid photosystem: from photocatalysts to a monolithic artificial leaf. Acc. Chem. Res. 55, 933–943 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Albero, J., Peng, Y. & García, H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 10, 5734–5749 (2020).

    Article  CAS  Google Scholar 

  4. Wang, Q. & Pan, Z. Advances and challenges in developing cocatalysts for photocatalytic conversion of carbon dioxide to fuels. Nano Res. 15, 10090–10109 (2022).

    Article  CAS  Google Scholar 

  5. Bae, K.-L., Kim, J., Lim, C. K., Nam, K. M. & Song, H. Colloidal zinc oxide-copper(I) oxide nanocatalysts for selective aqueous photocatalytic carbon dioxide conversion into methane. Nat. Commun. 8, 1156 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020).

    Article  CAS  Google Scholar 

  7. Suzuki, T. M. et al. Photocatalytic CO2 reduction by a Z-scheme mechanism in an aqueous suspension of particulate (CuGa)0.3Zn1.4S2, BiVO4 and a Co complex operating dual-functionally as an electron mediator and as a cocatalyst. Appl. Cat. B 316, 121600 (2022).

    Article  CAS  Google Scholar 

  8. Sahm, C. D., Ucoski, G. M., Roy, S. & Reisner, E. Automated and continuous-flow platform to analyze semiconductor–metal complex hybrid systems for photocatalytic CO2 reduction. ACS Catal. 11, 11266–11277 (2021).

    Article  CAS  Google Scholar 

  9. Alley, O. J. et al. Best practices in PEC water splitting: how to reliably measure solar-to-hydrogen efficiency of photoelectrodes. Front. Energy Res. 10, 884364 (2022).

    Article  Google Scholar 

  10. Rabani, J., Mamane, H., Pousty, D. & Bolton, J. R. Practical chemical actinometry—a review. Photochem. Photobiol. 97, 873–902 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Hong, J., Zhang, W., Ren, J. & Xu, R. Photocatalytic reduction of CO2: a brief review on product analysis and systematic methods. Anal. Methods 5, 1086–1097 (2013).

    Article  CAS  Google Scholar 

  12. Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    Article  CAS  Google Scholar 

  13. Rao, H., Lim, C.-H., Bonin, J., Miyake, G. M. & Robert, M. Visible-light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 140, 17830–17834 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, C.-C., Yu, Y.-H., van der Linden, B., Wu, J. C. S. & Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: fact or fiction? J. Am. Chem. Soc. 132, 8398–8406 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Boutin, E. et al. Aqueous electrochemical reduction of carbon dioxide and carbon monoxide into methanol with cobalt phthalocyanine. Angew. Chem. Int. Ed. 58, 16172–16176 (2019).

    Article  CAS  Google Scholar 

  16. Chatterjee, T., Boutin, E. & Robert, M. Manifesto for the routine use of NMR for the liquid product analysis of aqueous CO2 reduction: from comprehensive chemical shift data to formaldehyde quantification in water. Dalton Trans. 49, 4257–4265 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Kalathil, S., Miller, M. & Reisner, E. Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity. Angew. Chem. Int. Ed. 61, e202211057 (2022).

    Article  CAS  Google Scholar 

  18. Lam, E. & Reisner, E. A TiO2-Co(terpyridine)2 photocatalyst for the selective oxidation of cellulose to formate coupled to the reduction of CO2 to syngas. Angew. Chem. Int. Ed. 60, 23306–23312 (2021).

    Article  CAS  Google Scholar 

  19. Pichler, C. M., Bhattacharjee, S., Rahaman, M., Uekert, T. & Reisner, E. Conversion of polyethylene waste into gaseous hydrocarbons via integrated tandem chemical–photo/electrocatalytic processes. ACS Catal. 11, 9159–9167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamogawa, K. et al. Mechanistic study of photocatalytic CO2 reduction using a Ru(II)–Re(I) supramolecular photocatalyst. Chem. Sci. 12, 9682–9693 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Costentin, C., Robert, M. & Savéant, J.-M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Costentin, C. & Savéant, J.-M. Cyclic voltammetry of electrocatalytic films: fast catalysis regimes. ChemElectroChem 2, 1774–1784 (2015).

    Article  CAS  Google Scholar 

  24. Arakawa, R., Tachiyashiki, S. & Matsuo, T. Detection of reaction intermediates: photosubstitution of (polypyridine)ruthenium(II) complexes using online electrospray mass spectrometry. Anal. Chem. 67, 4133–4138 (1995).

    Article  CAS  Google Scholar 

  25. Vogt, C. & Weckhuysen, B. M. The concept of active site in heterogeneous catalysis. Nat. Rev. Chem. 6, 89–111 (2022).

    Article  PubMed  Google Scholar 

  26. Bo, Y., Gao, C. & Xiong, Y. Recent advances in engineering active sites for photocatalytic CO2 reduction. Nanoscale 12, 12196–12209 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Perazio, A., Lowe, G., Gobetto, R., Bonin, J. & Robert, M. Light-driven catalytic conversion of CO2 with heterogenized molecular catalysts based on fourth period transition metals. Coord Chem Rev 443, 214018 (2021).

  28. Badiani, V. M. et al. Engineering electro- and photocatalytic carbon materials for CO2 reduction by formate dehydrogenase. J. Am. Chem. Soc. 144, 14207–14216 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, J.-S. et al. Widely controllable syngas production by a dye-sensitized TiO2 hybrid system with ReI and CoIII catalysts under visible-light irradiation. Angew. Chem. Int. Ed. 56, 976–980 (2017).

    Article  CAS  Google Scholar 

  30. Ma, B. et al. Efficient visible-light-driven CO2 reduction by a cobalt molecular catalyst covalently linked to mesoporous carbon nitride. J. Am. Chem. Soc. 142, 6188–6195 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, B. et al. Hybridization of molecular and graphene materials for CO2 photocatalytic reduction with selectivity control. J. Am. Chem. Soc. 143, 8414–8425 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Kuehnel, M. F., Orchard, K. L., Dalle, K. E. & Reisner, E. Selective photocatalytic CO2 reduction in water through anchoring of a molecular Ni catalyst on CdS nanocrystals. J. Am. Chem. Soc. 139, 7217–7223 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Kuehnel, M. F. et al. ZnSe quantum dots modified with a Ni(cyclam) catalyst for efficient visible-light driven CO2 reduction in water. Chem. Sci. 9, 2501–2509 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mialane, P. et al. Heterogenisation of polyoxometalates and other metal-based complexes in metal–organic frameworks: from synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 50, 6152–6220 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. He, Z. et al. Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catal. Today 409, 103–118 (2023).

    Article  CAS  Google Scholar 

  36. Nakada, A., Kumagai, H., Robert, M., Ishitani, O. & Maeda, K. Molecule/semiconductor hybrid materials for visible-light CO2 reduction: design principles and interfacial engineering. Acc. Mater. Res. 2, 458–470 (2021).

    Article  CAS  Google Scholar 

  37. Kuramochi, Y. & Ishitani, O. Iridium(III) 1-phenylisoquinoline complexes as a photosensitizer for photocatalytic CO2 reduction: a mixed system with a Re(I) catalyst and a supramolecular photocatalyst. Inorg. Chem. 55, 5702–5709 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Takeda, H., Koike, K., Inoue, H. & Ishitani, O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J. Am. Chem. Soc. 130, 2023–2031 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Chernyshev, V. M. et al. Pd and Pt catalyst poisoning in the study of reaction mechanisms: what does the mercury test mean for catalysis? ACS Catal. 9, 2984–2995 (2019).

    Article  CAS  Google Scholar 

  40. Takeda, H., Koizumi, H., Okamoto, K. & Ishitani, O. Photocatalytic CO2 reduction using a Mn complex as a catalyst. Chem. Commun. 50, 1491–1493 (2014).

    Article  CAS  Google Scholar 

  41. Fu, J., Jiang, K., Qiu, X., Yu, J. & Liu, M. Product selectivity of photocatalytic CO2 reduction reactions. Mater. Today 32, 222–243 (2020).

    Article  CAS  Google Scholar 

  42. Yamazaki, Y., Takeda, H. & Ishitani, O. Photocatalytic reduction of CO2 using metal complexes. J. Photochem. Photobio. C 25, 106–137 (2015).

    Article  CAS  Google Scholar 

  43. Sun, H. (ed.) Solar-to-Chemical Conversion: Photocatalytic and Photoelectrochemical Processes (Wiley-VCH, 2021).

  44. Miao, T. J. & Tang, J. Characterization of charge carrier behavior in photocatalysis using transient absorption spectroscopy. J. Chem. Phys. 152, 194201 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Paz, Y. Transient IR spectroscopy as a tool for studying photocatalytic materials. J. Condens. Matter Phys. 31, 503004 (2019).

    Article  CAS  Google Scholar 

  46. Bracci, M. et al. in Electron Paramagnetic Resonance Vol. 27 (eds Murphy D. M. et al.) 1–46 (Royal Society of Chemistry, 2021).

  47. Hess, C. New advances in using Raman spectroscopy for the characterization of catalysts and catalytic reactions. Chem. Soc. Rev. 50, 3519–3564 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Rotundo, L. et al. Photochemical CO2 reduction using rhenium(I) tricarbonyl complexes with bipyridyl-type ligands with and without second coordination sphere effects. ChemPhotoChem 5, 526–537 (2021).

    Article  CAS  Google Scholar 

  49. Clark, M. L. et al. CO2 reduction catalysts on gold electrode surfaces influenced by large electric fields. J. Am. Chem. Soc. 140, 17643–17655 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Chen, L. D., Urushihara, M., Chan, K. & Nørskov, J. K. Electric field effects in electrochemical CO2 reduction. ACS Catal. 6, 7133–7139 (2016).

    Article  CAS  Google Scholar 

  51. Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Fujita, E., Grills, D. C., Manbeck, G. F. & Polyansky, D. E. Understanding the role of inter- and intramolecular promoters in electro- and photochemical CO2 reduction using Mn, Re, and Ru catalysts. Acc. Chem. Res. 55, 616–628 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.S., M.R. and J.B. acknowledge funding (ANR-20-CE05-0019) received from Agence Nationale de la Recherche. M.R. acknowledges partial financial support from Institut Universitaire de France. E.R. acknowledges a consolidator grant (MatEnSAP, 682833) from the European Research Council. A.J.M. acknowledges support from the Department of Energy, Office of Basic Energy Sciences, under grant DE-SC0012446. M.B. acknowledges a European Commission grant (DECADE, H2020-RIA-CE-NMBP-25 Program, grant no. 862030). T.-B.L. acknowledges support from the National Natural Science Foundation of China (21931007) and the National Key R&D Program of China (2022YFA1502902). O.I. acknowledges a Japan Society for the Promotion of Science KAKENHI grant (JP17H06440) in Scientific Research on Innovative Areas ‘Innovations for Light-Energy Conversion (I4LEC)’. F.M.T. acknowledges support from the Liquid Sunlight Alliance, which is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Fuels from Sunlight Hub under award no. DE-SC0021266.

Author information

Authors and Affiliations

Authors

Contributions

J.B. and M.R. built up the article based on the contribution of all the authors on specific sections, who also contributed to the discussion, reviewing and editing of the manuscript.

Corresponding authors

Correspondence to Julien Bonin or Marc Robert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jingrun Ran and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonchio, M., Bonin, J., Ishitani, O. et al. Best practices for experiments and reporting in photocatalytic CO2 reduction. Nat Catal 6, 657–665 (2023). https://doi.org/10.1038/s41929-023-00992-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00992-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing