Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The impact of perinatal immune development on mucosal homeostasis and chronic inflammation

Key Points

  • Here, we discuss emerging evidence that causally links perinatal exposure to microbial and environmental factors with chronic inflammatory diseases of the intestinal and respiratory tracts.

  • Structural and functional changes of the lung and gut mucosal immune systems occur during the pre- and postnatal periods, and are regulated by developmental and environmental factors. Concomitantly, the exposure to environmental stimuli increases and the resident microbiota at mucosal sites is established.

  • Adaptation to these changes is facilitated by complex molecular and cellular regulatory circuits that prevent inappropriate immune stimulation and promote the establishment of a stable microbial–host homeostasis.

  • A failure to acquire tolerance to food and environmental antigens, impaired epithelial barrier formation and an imbalanced mucosal cellular composition promote the development of inflammation. In addition, alterations to the composition of the resident microbiota influence nutrient metabolism, mucosal tissue maturation and immunoregulatory mechanisms.

  • Further insight is required to fully understand the links between early microbial and environmental exposures, perinatal mucosal tissue maturation, postnatal establishment of the mucosal microbiota and disease susceptibility; such information might be used to develop prophylactic and therapeutic strategies to overcome chronic inflammatory diseases.

Abstract

The mucosal surfaces of the gut and airways have important barrier functions and regulate the induction of immunological tolerance. The rapidly increasing incidence of chronic inflammatory disorders of these surfaces, such as inflammatory bowel disease and asthma, indicates that the immune functions of these mucosae are becoming disrupted in humans. Recent data indicate that events in prenatal and neonatal life orchestrate mucosal homeostasis. Several environmental factors promote the perinatal programming of the immune system, including colonization of the gut and airways by commensal microorganisms. These complex microbial–host interactions operate in a delicate temporal and spatial manner and have an important role in the induction of homeostatic mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Postnatal development and maturation of the intestinal mucosal barrier and immune system.
Figure 2: Development of the respiratory mucosal immune system.
Figure 3: The cellular network of gut immune homeostasis and the cellular processes driving mucosal inflammation.

Similar content being viewed by others

References

  1. Bach, J. F. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 347, 911–920 (2002).

    Article  PubMed  Google Scholar 

  2. Holt, P. G., Strickland, D. H., Wikstrom, M. E. & Jahnsen, F. L. Regulation of immunological homeostasis in the respiratory tract. Nature Rev. Immunol. 8, 142–152 (2008).

    Article  CAS  Google Scholar 

  3. Guarner, F. et al. Mechanisms of disease: the hygiene hypothesis revisited. Nature Clin. Pract. Gastroenterol. Hepatol. 3, 275–284 (2006).

    Article  CAS  Google Scholar 

  4. Tulic, M. K. et al. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J. Allergy Clin. Immunol. 127, 470–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Prescott, S. L. Role of dietary immunomodulatory factors in the development of immune tolerance. Nestle Nutr. Workshop Ser. Pediatr. Program. 64, 185–194 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Fasano, A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 91, 151–175 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Elinav, E., Strowig, T., Henao-Mejia, J. & Flavell, R. A. Regulation of the antimicrobial response by NLR proteins. Immunity 34, 665–679 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Garrett, W. S. et al. Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8, 292–300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, Y. J. et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J. Allergy Clin. Immunol. 127, 372–381 (2011).

    Article  PubMed  Google Scholar 

  11. McGovern, D. P. et al. Genome-wide association identifies multiple ulcerative colitis susceptibility loci. Nature Genet. 42, 332–337 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Franke, A. et al. Genome-wide association study for ulcerative colitis identifies risk loci at 7q22 and 22q13 (IL17REL). Nature Genet. 42, 292–294 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Noguchi, E. et al. Genome-wide association study identifies HLA-DP as a susceptibility gene for pediatric asthma in asian populations. PLoS Genet. 7, e1002170 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Harper, J., Mould, A., Andrews, R. M., Bikoff, E. K. & Robertson, E. J. The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc. Natl Acad. Sci. USA 13 Jun 2011 (doi:10.1073/pnas.1105852108).

    Article  CAS  Google Scholar 

  15. de Santa, B. P., van den Brink, G. R. & Roberts, D. J. Development and differentiation of the intestinal epithelium. Cell. Mol. Life Sci. 60, 1322–1332 (2003).

    Article  CAS  Google Scholar 

  16. Darmoul, D., Brown, D., Selsted, M. E. & Ouellette, A. J. Cryptdin gene expression in developing mouse small intestine. Am. J. Physiol. 272, G197–G206 (1997).

    CAS  PubMed  Google Scholar 

  17. Bry, L. et al. Paneth cell differentiation in the developing intestine of normal and transgenic mice. Proc. Natl Acad. Sci. USA 91, 10335–10339 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Menard, S. et al. Developmental switch of intestinal antimicrobial peptide expression. J. Exp. Med. 205, 183–193 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275, 40478–40482 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  21. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kai-Larsen, Y. et al. Antimicrobial components of the neonatal gut affected upon colonization. Pediatr. Res. 61, 530–536 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol. 11, 76–83 (2010). This is the first study to detail the functional consequences of decreased or increased antimicrobial peptide production on the enteric microbiota.

    Article  CAS  Google Scholar 

  24. Palmer, C., Bik, E. M., DiGiulio, D. B., Relman, D. A. & Brown, P. O. Development of the human infant intestinal microbiota. PLoS Biol. 5, e177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dominguez-Bello, M. G. et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl Acad. Sci. USA 107, 11971–11975 (2010). An important study showing that the human neonatal intestinal microbiota is derived from the mother but depends on the mode of delivery.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108 (Suppl. 1), 4578–4585 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Costello, E. K. et al. Bacterial community variation in human body habitats across space and time. Science 326, 1694–1697 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lotz, M. et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J. Exp. Med. 203, 973–984 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gribar, S. C. et al. Reciprocal expression and signaling of TLR4 and TLR9 in the pathogenesis and treatment of necrotizing enterocolitis. J. Immunol. 182, 636–646 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Claud, E. C. et al. Developmentally regulated IκB expression in intestinal epithelium and susceptibility to flagellin-induced inflammation. Proc. Natl Acad. Sci. USA 101, 7404–7408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chassin, C. et al. miR-146a mediates protective innate immune tolerance in the neonate intestine. Cell Host Microbe 8, 358–368 (2010). A detailed analysis of the molecular processes that control intestinal epithelial innate immune tolerance in neonatal mice.

    Article  CAS  Google Scholar 

  32. Kajino-Sakamoto, R. et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J. Immunol. 181, 1143–1152 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Hooper, L. V. et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Bates, J. M. et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation. Dev. Biol. 297, 374–386 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Broquet, A. H., Hirata, Y., McAllister, C. S. & Kagnoff, M. F. RIG-I/MDA5/MAVS are required to signal a protective IFN response in rotavirus-infected intestinal epithelium. J. Immunol. 186, 1618–1626 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Pott, J. et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc. Natl Acad. Sci. USA 108, 7944–7949 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weitkamp, J. H. et al. Ontogeny of FOXP3+ regulatory T cells in the postnatal human small intestinal and large intestinal lamina propria. Pediatr. Dev. Pathol. 12, 443–449 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xiong, N. & Raulet, D. H. Development and selection of γδ T cells. Immunol. Rev. 215, 15–31 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. van de Pavert, S. A. & Mebius, R. E. New insights into the development of lymphoid tissues. Nature Rev. Immunol. 10, 664–674 (2010).

    Article  CAS  Google Scholar 

  40. Brandtzaeg, P. Function of mucosa-associated lymphoid tissue in antibody formation. Immunol. Invest. 39, 303–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Round, J. L. et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332, 974–977 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Brandtzaeg, P. Food allergy: separating the science from the mythology. Nature Rev. Gastroenterol. Hepatol. 7, 380–400 (2010).

    Article  CAS  Google Scholar 

  46. Michaelsson, J., Mold, J. E., McCune, J. M. & Nixon, D. F. Regulation of T cell responses in the developing human fetus. J. Immunol. 176, 5741–5748 (2006). This study showed that CD4+CD25+ T Reg cells are present at high frequency in human fetal lymphoid tissue, including the mesenteric lymph nodes; these T Reg cells seem to be important in controlling T cell responses in utero and perhaps also neonatally.

    Article  CAS  PubMed  Google Scholar 

  47. Grindebacke, H. et al. Dynamic development of homing receptor expression and memory cell differentiation of infant CD4+CD25high regulatory T cells. J. Immunol. 183, 4360–4370 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Haddeland, U. et al. Putative regulatory T cells are impaired in cord blood from neonates with hereditary allergy risk. Pediatr. Allergy Immunol. 16, 104–112 (2005). This study of cord blood cells presents data to indicate that neonates at high risk of atopy (familial allergic disease) might generate decreased numbers of CD4+CD25+ T Reg cells after stimulation.

    Article  PubMed  Google Scholar 

  50. Smith, M. et al. Children with egg allergy have evidence of reduced neonatal CD4+CD25+CD127lo/− regulatory T cell function. J. Allergy Clin. Immunol. 121, 1460–1466.e7 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. O'Mahony, C. et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog. 4, e1000112 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, G. et al. “Default” generation of neonatal regulatory T cells. J. Immunol. 185, 71–78 (2010). Murine neonatal CD4+ T cells were shown to have an inborn ability to preferentially develop into FOXP3+ T Reg cells with suppressive function after stimulation, which was in marked contrast to results obtained with adult CD4+ T cells.

    Article  CAS  PubMed  Google Scholar 

  53. Lee, J. H., Ulrich, B., Cho, J., Park, J. & Kim, C. H. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into TH17 cells. J. Immunol. 187, 1778–1787 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009). References 54 and 55 demonstrate the striking effects of one particular gut commensal on mucosal immune development.

    Article  CAS  PubMed  Google Scholar 

  56. Jiang, H. Q., Bos, N. A. & Cebra, J. J. Timing, localization, and persistence of colonization by segmented filamentous bacteria in the neonatal mouse gut depend on immune status of mothers and pups. Infect. Immun. 69, 3611–3617 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brandtzaeg, P., Fjellanger, I. & Gjeruldsen, S. T. Adsorption of immunoglobulin A onto oral bacteria in vivo. J. Bacteriol. 96, 242–249 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. van der Waaij, L. A., Limburg, P. C., Mesander, G. & van der Waaij, D. In vivo IgA coating of anaerobic bacteria in human faeces. Gut 38, 348–354 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007). In this study, Bacteroides thetaiotaomicron was introduced into germ-free and immunodeficient mice harbouring IgA-producing hybridoma cells with reactivity against a single immunomodulatory molecule; the antibody decreased intestinal pro-inflammatory signalling and bacterial epitope expression, thereby documenting the role of secretory IgA in a balanced mutualistic host–microbial relationship.

    Article  CAS  PubMed  Google Scholar 

  60. Mathias, A. & Corthesy, B. Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. J. Biol. Chem. 286, 17239–17247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hanson, L. A. Session 1: Feeding and infant development breast-feeding and immune function. Proc. Nutr. Soc. 66, 384–396 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Pabst, R., Russell, M. W. & Brandtzaeg, P. Tissue distribution of lymphocytes and plasma cells and the role of the gut. Trends Immunol. 29, 206–208 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. Mellander, L., Carlsson, B., Jalil, F., Soderstrom, T. & Hanson, L. A. Secretory IgA antibody response against Escherichia coli antigens in infants in relation to exposure. J. Pediatr. 107, 430–433 (1985).

    Article  CAS  PubMed  Google Scholar 

  64. Crabbe, P. A., Nash, D. R., Bazin, H., Eyssen, H. & Heremans, J. F. Immunohistochemical observations on lymphoid tissues from conventional and germ-free mice. Lab. Invest. 22, 448–457 (1970). This is the first experimental study to show that the development of the intestinal population of IgA-producing plasma cells depends on colonization of the gut with a commensal microbiota.

    CAS  PubMed  Google Scholar 

  65. Shroff, K. E., Meslin, K. & Cebra, J. J. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63, 3904–3913 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kaufman, D. R. et al. Vitamin A deficiency impairs vaccine-elicited gastrointestinal immunity. J. Immunol. 187, 1877–1883 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Brandtzaeg, P. Update on mucosal immunoglobulin A in gastrointestinal disease. Curr. Opin. Gastroenterol. 26, 554–563 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Johansen, F. E. et al. Absence of epithelial immunoglobulin A transport, with increased mucosal leakiness, in polymeric immunoglobulin receptor/secretory component-deficient mice. J. Exp. Med. 190, 915–922 (1999). This study describes for the first time the generation of knockout mice deficient for a functional polymeric immunoglobulin receptor (pIgR) in secretory epithelia and the liver. These mice could not therefore export IgA or IgM to the mucosal surfaces and had a 'leaky' gut mucosa, which was associated with an increased systemic immune responsiveness to commensal bacteria, but remarkably not to food antigens.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sait, L. C. et al. Secretory antibodies reduce systemic antibody responses against the gastrointestinal commensal flora. Int. Immunol. 19, 257–265 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Karlsson, M. R., Johansen, F. E., Kahu, H., Macpherson, A. & Brandtzaeg, P. Hypersensitivity and oral tolerance in the absence of a secretory immune system. Allergy 65, 561–570 (2010). Mice deficient for pIgR were shown to be hyper-reactive and therefore predisposed to anaphylaxis after systemic antigen sensitization and challenge. However, they also had an increased capacity for the induction of oral tolerance, which after continuous feeding of cognate antigen protected the mice from IgG1-induced anaphylaxis and delayed type hypersensitivity. This study showed for the first time that a leaky gut mucosa not only results in hyper-reactivity but can also enhance mucosally induced tolerance to cognate antigen.

    Article  CAS  PubMed  Google Scholar 

  72. Boirivant, M. et al. A transient breach in the epithelial barrier leads to regulatory T-cell generation and resistance to experimental colitis. Gastroenterology 135, 1612–1623 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Karlsson, M. R., Rugtveit, J. & Brandtzaeg, P. Allergen-responsive CD4+CD25+ regulatory T cells in children who have outgrown cow's milk allergy. J. Exp. Med. 199, 1679–1688 (2004). This study provides the first human data to indicate that oral tolerance to dietary antigens is associated with the development or proliferation of CD4+CD25+ T Reg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shreffler, W. G., Wanich, N., Moloney, M., Nowak-Wegrzyn, A. & Sampson, H. A. Association of allergen-specific regulatory T cells with the onset of clinical tolerance to milk protein. J. Allergy Clin. Immunol. 123, 43–52 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Feng, T. & Elson, C. O. Adaptive immunity in the host-microbiota dialog. Mucosal Immunol. 4, 15–21 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Menezes, J. S. et al. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int. Immunol. 15, 447–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Kang, W. & Kudsk, K. A. Is there evidence that the gut contributes to mucosal immunity in humans? JPEN J. Parenter. Enteral Nutr. 31, 246–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Barclay, A. R. et al. Systematic review: the role of breastfeeding in the development of pediatric inflammatory bowel disease. J. Pediatr. 155, 421–426 (2009).

    Article  PubMed  Google Scholar 

  79. Kau, A. L., Ahern, P. P., Griffin, N. W., Goodman, A. L. & Gordon, J. I. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harju, K., Glumoff, V. & Hallman, M. Ontogeny of Toll-like receptors TLR2 and TLR4 in mice. Pediatr. Res. 49, 81–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Petrikin, J. E., Gaedigk, R., Leeder, J. S. & Truog, W. E. Selective Toll-like receptor expression in human fetal lung. Pediatr. Res. 68, 335–338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhang, X., Shan, P., Jiang, G., Cohn, L. & Lee, P. J. Toll-like receptor 4 deficiency causes pulmonary emphysema. J. Clin. Invest. 116, 3050–3059 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Saenz, S. A., Taylor, B. C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Barrett, N. A. & Austen, K. F. Innate cells and T helper 2 cell immunity in airway inflammation. Immunity 31, 425–437 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hiemstra, P. S. The role of epithelial β-defensins and cathelicidins in host defense of the lung. Exp. Lung Res. 33, 537–542 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Bienenstock, J., Johnston, N. & Perey, D. Y. Bronchial lymphoid tissue. I. Morphologic characteristics. Lab. Invest. 28, 686–692 (1973).

    CAS  PubMed  Google Scholar 

  87. Racz, P., Tenner-Racz, K., Myrvik, Q. N. & Fainter, L. K. Functional architecture of bronchial associated lymphoid tissue and lymphoepithelium in pulmonary cell-mediated reactions in the rabbit. J. Reticuloendothel. Soc. 22, 59–83 (1977).

    CAS  PubMed  Google Scholar 

  88. Finke, D., Baribaud, F., Diggelmann, H. & Acha-Orbea, H. Extrafollicular plasmablast B cells play a key role in carrying retroviral infection to peripheral organs. J. Immunol. 166, 6266–6275 (2001).

    Article  CAS  PubMed  Google Scholar 

  89. Delventhal, S., Hensel, A., Petzoldt, K. & Pabst, R. Effects of microbial stimulation on the number, size and activity of bronchus-associated lymphoid tissue (BALT) structures in the pig. Int. J. Exp. Pathol. 73, 351–357 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tschernig, T. & Pabst, R. Bronchus-associated lymphoid tissue (BALT) is not present in the normal adult lung but in different diseases. Pathobiology 68, 1–8 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Chvatchko, Y., Kosco-Vilbois, M. H., Herren, S., Lefort, J. & Bonnefoy, J. Y. Germinal center formation and local immunoglobulin E (IgE) production in the lung after an airway antigenic challenge. J. Exp. Med. 184, 2353–2360 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Corbett, N. P. et al. Ontogeny of Toll-like receptor mediated cytokine responses of human blood mononuclear cells. PLoS ONE 5, e15041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yerkovich, S. T. et al. Postnatal development of monocyte cytokine responses to bacterial lipopolysaccharide. Pediatr. Res. 62, 547–552 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Holt, P. G., Batty, J. E. & Turner, K. J. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology 42, 409–417 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Uthoff, H. et al. Critical role of preconceptional immunization for protective and nonpathological specific immunity in murine neonates. J. Immunol. 171, 3485–3492 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Polte, T., Hennig, C. & Hansen, G. Allergy prevention starts before conception: maternofetal transfer of tolerance protects against the development of asthma. J. Allergy Clin. Immunol. 122, 1022–1030 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Blumer, N., Pfefferle, P. I. & Renz, H. Development of mucosal immune function in the intrauterine and early postnatal environment. Curr. Opin. Gastroenterol. 23, 655–660 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Holloway, J. A. et al. Detection of house-dust-mite allergen in amniotic fluid and umbilical-cord blood. Lancet 356, 1900–1902 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Vance, G. H. et al. Exposure of the fetus and infant to hens' egg ovalbumin via the placenta and breast milk in relation to maternal intake of dietary egg. Clin. Exp. Allergy 35, 1318–1326 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Verhasselt, V. et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nature Med. 14, 170–175 (2008). Using an asthma model in mice, these authors showed that allergen-exposed dams could transfer small amounts of allergen from their airways to their breast-fed pups; this resulted in the induction of oral tolerance in the pups, which mediated protection against asthma in the same model.

    Article  CAS  PubMed  Google Scholar 

  101. Gereke, M., Jung, S., Buer, J. & Bruder, D. Alveolar type II epithelial cells present antigen to CD4+ T cells and induce Foxp3+ regulatory T cells. Am. J. Respir. Crit. Care Med. 179, 344–355 (2009).

    Article  PubMed  Google Scholar 

  102. Vestermark, V., Hogdall, C. K., Birch, M., Plenov, G. & Toftager-Larsen, K. Influence of the mode of delivery on initiation of breast-feeding. Eur. J. Obstet. Gynecol. Reprod. Biol. 38, 33–38 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Ege, M. J. et al. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–709 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Decker, E. et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125, e1433–e1440 (2010).

    Article  PubMed  Google Scholar 

  105. Koplin, J. et al. Is caesarean delivery associated with sensitization to food allergens and IgE-mediated food allergy: a systematic review. Pediatr. Allergy Immunol. 19, 682–687 (2008).

    Article  PubMed  Google Scholar 

  106. Kuitunen, M. et al. Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J. Allergy Clin. Immunol. 123, 335–341 (2009). In this study, mothers with infants at high risk of IgE-mediated allergy received a probiotic mixture during the last month of pregnancy and their infants received the probiotic mixture combined with prebiotics until the age of 6 months. No allergy-preventive effect of the probiotic mixture was observed at 5 years of age except in children who had been delivered by Caesarean section.

    Article  PubMed  Google Scholar 

  107. Furuhjelm, C. et al. Fish oil supplementation in pregnancy and lactation may decrease the risk of infant allergy. Acta Paediatr. 98, 1461–1467 (2009).

    Article  PubMed  Google Scholar 

  108. Newson, R. B. et al. Umbilical cord and maternal blood red cell fatty acids and early childhood wheezing and eczema. J. Allergy Clin. Immunol. 114, 531–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Dirix, C. E. et al. Prenatal arachidonic acid exposure and selected immune-related variables in childhood. Br. J. Nutr. 102, 387–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Maslowski, K. M. & Mackay, C. R. Diet, gut microbiota and immune responses. Nature Immunol. 12, 5–9 (2011). A timely and interesting review focusing on the relationship between the fields of immunology, microbiology, nutrition and metabolism. It is also pointed out how the diet in various parts of the world influences the composition of the gut microbiome.

    Article  CAS  Google Scholar 

  111. Sandin, A., Braback, L., Norin, E. & Bjorksten, B. Faecal short chain fatty acid pattern and allergy in early childhood. Acta Paediatr. 98, 823–827 (2009).

    Article  PubMed  Google Scholar 

  112. Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Malmborg, P., Bahmanyar, S., Grahnquist, L., Hildebrand, H. & Montgomery, S. Cesarean section and the risk of pediatric Crohn's disease. Inflamm. Bowel Dis. 27 Apr 2011 (doi:10.1002/ibd.21741).

    Article  PubMed  Google Scholar 

  114. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Garrett, W. S., Gordon, J. I. & Glimcher, L. H. Homeostasis and inflammation in the intestine. Cell 140, 859–870 (2010). References 114 and 115 demonstrate the transmissibility of an altered 'colitogenic' microbiota that can induce disease in genetically wild-type animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010). Exciting work describing the requirement for viral infection to promote cellular dysfunction and disease in a genetically predisposed animal model of Crohn's disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stecher, B. et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 5, 2177–2189 (2007).

    Article  CAS  PubMed  Google Scholar 

  118. Neu, J. & Walker, W. A. Necrotizing enterocolitis. N. Engl. J. Med. 364, 255–264 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sodhi, C. P. et al. Toll-like receptor-4 inhibits enterocyte proliferation via impaired β-catenin signaling in necrotizing enterocolitis. Gastroenterology 138, 185–196 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Alfaleh, K. & Bassler, D. Probiotics for prevention of necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. CD005496 (2008).

  121. Bottcher, M. F., Nordin, E. K., Sandin, A., Midtvedt, T. & Bjorksten, B. Microflora-associated characteristics in faeces from allergic and nonallergic infants. Clin. Exp. Allergy 30, 1590–1596 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Penders, J. et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA Birth Cohort Study. Gut 56, 661–667 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Murray, C. S. et al. Fecal microbiota in sensitized wheezy and non-sensitized non-wheezy children: a nested case–control study. Clin. Exp. Allergy 35, 741–745 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Adlerberth, I. et al. Gut microbiota and development of atopic eczema in 3 European birth cohorts. J. Allergy Clin. Immunol. 120, 343–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Wang, M. et al. Reduced diversity in the early fecal microbiota of infants with atopic eczema. J. Allergy Clin. Immunol. 121, 129–134 (2008).

    Article  PubMed  Google Scholar 

  126. Arnold, I. C. et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J. Clin. Invest. 121, 3088–3093 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Noverr, M. C., Falkowski, N. R., McDonald, R. A., McKenzie, A. N. & Huffnagle, G. B. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13. Infect. Immun. 73, 30–38 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Thavagnanam, S., Fleming, J., Bromley, A., Shields, M. D. & Cardwell, C. R. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy 38, 629–633 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Bager, P., Wohlfahrt, J. & Westergaard, T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin. Exp. Allergy 38, 634–642 (2008).

    Article  CAS  PubMed  Google Scholar 

  131. Metsala, J. et al. Perinatal factors and the risk of asthma in childhood — a population-based register study in Finland. Am. J. Epidemiol. 168, 170–178 (2008).

    Article  PubMed  Google Scholar 

  132. von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nature Rev. Immunol. 10, 861–868 (2010).

    Article  CAS  Google Scholar 

  133. Ege, M. J. et al. Prenatal exposure to a farm environment modifies atopic sensitization at birth. J. Allergy Clin. Immunol. 122, 407–412.e4 (2008).

    Article  PubMed  Google Scholar 

  134. Heinrich, J. et al. Environmental surveys in the areas of Bitterfeld, Hettstedt and a comparative area in 1992–2000. Gesundheitswesen 64, 675–682 (2002) (in German).

    Article  CAS  PubMed  Google Scholar 

  135. Pfefferle, P. I. et al. Cord blood allergen-specific IgE is associated with reduced IFN-γ production by cord blood cells: the Protection against Allergy — Study in Rural Environments (PASTURE) Study. J. Allergy Clin. Immunol. 122, 711–716 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Braun-Fahrlander, C. et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N. Engl. J. Med. 347, 869–877 (2002).

    Article  PubMed  Google Scholar 

  137. Ege, M. J. et al. Prenatal farm exposure is related to the expression of receptors of the innate immunity and to atopic sensitization in school-age children. J. Allergy Clin. Immunol. 117, 817–823 (2006).

    Article  PubMed  Google Scholar 

  138. Patel, M. et al. TLR2 agonist ameliorates established allergic airway inflammation by promoting Th1 response and not via regulatory T cells. J. Immunol. 174, 7558–7563 (2005).

    Article  CAS  PubMed  Google Scholar 

  139. Velasco, G. et al. Toll-like receptor 4 or 2 agonists decrease allergic inflammation. Am. J. Respir. Cell Mol. Biol. 32, 218–224 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Gerhold, K., Bluemchen, K., Franke, A., Stock, P. & Hamelmann, E. Exposure to endotoxin and allergen in early life and its effect on allergen sensitization in mice. J. Allergy Clin. Immunol. 112, 389–396 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Blumer, N., Herz, U., Wegmann, M. & Renz, H. Prenatal lipopolysaccharide exposure prevents allergic sensitization and airway inflammation, but not airway responsiveness in a murine model of experimental asthma. Clin. Exp. Allergy 35, 397–402 (2005).

    Article  CAS  PubMed  Google Scholar 

  142. Sel, S. et al. Immunomodulatory effects of viral TLR ligands on experimental asthma depend on the additive effects of IL-12 and IL-10. J. Immunol. 178, 7805–7813 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Kim, Y. S., Kwon, K. S., Kim, D. K., Choi, I. W. & Lee, H. K. Inhibition of murine allergic airway disease by Bordetella pertussis. Immunology 112, 624–630 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Debarry, J. et al. Acinetobacter lwoffii and Lactococcus lactis strains isolated from farm cowsheds possess strong allergy-protective properties. J. Allergy Clin. Immunol. 119, 1514–1521 (2007).

    Article  PubMed  Google Scholar 

  145. Tulic, M. K. et al. Differences in innate immune function between allergic and nonallergic children: new insights into immune ontogeny. J. Allergy Clin. Immunol. 127, 470–478 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Conrad, M. L. et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J. Exp. Med. 206, 2869–2877 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pattenden, S. et al. Parental smoking and children's respiratory health: independent effects of prenatal and postnatal exposure. Tob. Control 15, 294–301 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Alati, R., Al Mamun, A., O'Callaghan, M., Najman, J. M. & Williams, G. M. In utero and postnatal maternal smoking and asthma in adolescence. Epidemiology 17, 138–144 (2006).

    Article  PubMed  Google Scholar 

  149. Gilliland, F. D. et al. Maternal smoking during pregnancy, environmental tobacco smoke exposure and childhood lung function. Thorax 55, 271–276 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Blacquiere, M. J. et al. Maternal smoking during pregnancy induces airway remodelling in mice offspring. Eur. Respir. J. 33, 1133–1140 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Nakamura, Y. et al. Cigarette smoke inhibits lung fibroblast proliferation and chemotaxis. Am. J. Respir. Crit. Care Med. 151, 1497–1503 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Blacquiere, M. J. et al. Maternal smoking during pregnancy decreases Wnt signalling in neonatal mice. Thorax 65, 553–554 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Noakes, P. S. et al. Maternal smoking is associated with impaired neonatal Toll-like-receptor-mediated immune responses. Eur. Respir. J. 28, 721–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  154. Noakes, P. S., Holt, P. G. & Prescott, S. L. Maternal smoking in pregnancy alters neonatal cytokine responses. Allergy 58, 1053–1058 (2003).

    Article  CAS  PubMed  Google Scholar 

  155. Gentile, D. et al. Association between environmental tobacco smoke and diminished dendritic cell interleukin-10 production during infancy. Ann. Allergy Asthma Immunol. 92, 433–437 (2004).

    Article  CAS  PubMed  Google Scholar 

  156. Singh, S. P. et al. Maternal exposure to secondhand cigarette smoke primes the lung for induction of phosphodiesterase-4D5 isozyme and exacerbated Th2 responses: rolipram attenuates the airway hyperreactivity and muscarinic receptor expression but not lung inflammation and atopy. J. Immunol. 183, 2115–2121 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Seymour, B. W. et al. Gender differences in the allergic response of mice neonatally exposed to environmental tobacco smoke. Dev. Immunol. 9, 47–54 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Romagnani, S. Regulation of the development of type 2 T-helper cells in allergy. Curr. Opin. Immunol. 6, 838–846 (1994).

    Article  CAS  PubMed  Google Scholar 

  159. Singh, S. P. et al. Early postnatal exposure to cigarette smoke impairs the antigen-specific T-cell responses in the spleen. Toxicol. Lett. 167, 231–237 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Gilliland, F. D. et al. Effects of glutathione S-transferase M1, maternal smoking during pregnancy, and environmental tobacco smoke on asthma and wheezing in children. Am. J. Respir. Crit. Care Med. 166, 457–463 (2002).

    Article  PubMed  Google Scholar 

  161. Salam, M. T., Gauderman, W. J., McConnell, R., Lin, P. C. & Gilliland, F. D. Transforming growth factor-1 C-509T polymorphism, oxidant stress, and early-onset childhood asthma. Am. J. Respir. Crit. Care Med. 176, 1192–1199 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Ramadas, R. A. et al. Interleukin-1R antagonist gene and pre-natal smoke exposure are associated with childhood asthma. Eur. Respir. J. 29, 502–508 (2007).

    Article  CAS  PubMed  Google Scholar 

  163. Harnett, W. & Harnett, M. M. Helminth-derived immunomodulators: can understanding the worm produce the pill? Nature Rev. Immunol. 10, 278–284 (2010).

    Article  CAS  Google Scholar 

  164. Kukkonen, K. et al. High intestinal IgA associates with reduced risk of IgE-associated allergic diseases. Pediatr. Allergy Immunol. 21, 67–73 (2010). In this study, prenatal and postnatal probiotic intervention tended to increase IgA levels in the faeces of children at the age of 6 months; this increase of faecal IgA seemed to be associated with a mild inflammatory response in the gut mucosa and a decreased risk of IgE-mediated allergic diseases.

    Article  PubMed  Google Scholar 

  165. Salminen, S., Collado, M. C., Isolauri, E. & Gueimonde, M. Microbial–host interactions: selecting the right probiotics and prebiotics for infants. Nestle Nutr. Workshop Ser. Pediatr. Program 64, 201–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  166. Hormannsperger, G. & Haller, D. Molecular crosstalk of probiotic bacteria with the intestinal immune system: clinical relevance in the context of inflammatory bowel disease. Int. J. Med. Microbiol. 300, 63–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  167. Rachmilewitz, D. et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 126, 520–528 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010). This study showed that a single microbial immunomodulatory molecule — polysaccharide A from the commensal bacterium Bacteroides fragilis — can induce T Reg cells in the murine gut, which express Foxp3 and secrete anti-inflammatory cytokines such as IL-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Solt, L. A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011). This study used a high-affinity synthetic ligand to block specifically the retinoic acid receptor-related orphan receptors (RORs) that are indispensable for the development of pro-inflammatory T H 17 cells; the results indicate that such compounds have potential for the future treatment of chronic inflammatory diseases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Uibo, R., Tian, Z. & Gershwin, M. E. Celiac disease: a model disease for gene-environment interaction. Cell. Mol. Immunol. 8, 93–95 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Zhernakova, A. et al. Meta-analysis of genome-wide association studies in celiac disease and rheumatoid arthritis identifies fourteen non-HLA shared loci. PLoS Genet. 7, e1002004 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Eder, W. & von Mutius, E. Genetics in asthma: the solution to a lasting conundrum? Allergy 60, 1482–1484 (2005).

    Article  CAS  PubMed  Google Scholar 

  173. Hong, X., Tsai, H. J. & Wang, X. Genetics of food allergy. Curr. Opin. Pediatr. 21, 770–776 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Chabra, S. et al. Vitamin A status in preterm neonates with and without chronic lung disease. J. Paediatr. Child Health 30, 432–435 (1994).

    Article  CAS  PubMed  Google Scholar 

  175. Schuster, G. U., Kenyon, N. J. & Stephensen, C. B. Vitamin A deficiency decreases and high dietary vitamin A increases disease severity in the mouse model of asthma. J. Immunol. 180, 1834–1842 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Marin, L., Dufour, M. E., Nguyen, T. M., Tordet, C. & Garabedian, M. Maturational changes induced by 1α, 25-dihydroxyvitamin D3 in type II cells from fetal rat lung explants. Am. J. Physiol. 265, L45–L52 (1993).

    CAS  PubMed  Google Scholar 

  177. Nguyen, M., Guillozo, H., Garabedian, M. & Balsan, S. Lung as a possible additional target organ for vitamin D during fetal life in the rat. Biol. Neonate 52, 232–240 (1987).

    Article  CAS  PubMed  Google Scholar 

  178. Litonjua, A. A. Childhood asthma may be a consequence of vitamin D deficiency. Curr. Opin. Allergy Clin. Immunol. 9, 202–207 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Adorini, L. & Penna, G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum. Immunol. 70, 345–352 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Manavalan, J. S. et al. High expression of ILT3 and ILT4 is a general feature of tolerogenic dendritic cells. Transpl. Immunol. 11, 245–258 (2003).

    Article  CAS  PubMed  Google Scholar 

  181. Rochat, M. K. et al. Maternal vitamin D intake during pregnancy increases gene expression of ILT3 and ILT4 in cord blood. Clin. Exp. Allergy 40, 786–794 (2010).

    Article  CAS  PubMed  Google Scholar 

  182. Greenough, A., Shaheen, S. O., Shennan, A., Seed, P. T. & Poston, L. Respiratory outcomes in early childhood following antenatal vitamin C and E supplementation. Thorax 65, 998–1003 (2010).

    Article  PubMed  Google Scholar 

  183. Turner, S. W. et al. Associations between fetal size, maternal α-tocopherol and childhood asthma. Thorax 65, 391–397 (2010).

    Article  PubMed  Google Scholar 

  184. Dunstan, J. A. et al. The relationship between maternal folate status in pregnancy, cord blood folate levels, and allergic outcomes in early childhood. Allergy 19 Sep 2011 (doi:10.1111/j.1398-9995.2011.02714.x).

    Article  CAS  PubMed  Google Scholar 

  185. Waterland, R. A. & Michels, K. B. Epigenetic epidemiology of the developmental origins hypothesis. Annu. Rev. Nutr. 27, 363–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  186. Hollingsworth, J. W. et al. In utero supplementation with methyl donors enhances allergic airway disease in mice. J. Clin. Invest. 118, 3462–3469 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Whitrow, M. J., Moore, V. M., Rumbold, A. R. & Davies, M. J. Effect of supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am. J. Epidemiol. 170, 1486–1493 (2009).

    Article  PubMed  Google Scholar 

  188. Yang, Q. H. et al. Race-ethnicity differences in folic acid intake in women of childbearing age in the United States after folic acid fortification: findings from the National Health and Nutrition Examination Survey, 2001–2002. Am. J. Clin. Nutr. 85, 1409–1416 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

H.R. is supported by the SFB/TR22 DFG-funded network 'Allergic Immune Responses of the Lung' and by the Universities of Giessen and Marburg Lung Centre (UGMLC), a LOEWE excellence initiative of the Hessian Government, Germany. P.B. is supported by the Research Council of Norway, The University of Oslo and Oslo University Hospital, through the joint financing of the Center of Excellence named 'Centre for Immune Regulation'. M.H. is supported by the German Research Foundation (Ho2236/5-3), the Federal Ministry of Education and Research (DLR 01GU0825 and DLR 01KI1003D) and the Collaborative Research Center grants SFB621 and SFB900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Renz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Glossary

Oral tolerance

This form of tolerance is established through the intestinal mucosa to avoid local and systemic hypersensitivity to innocuous antigens that have breached the epithelial barrier. It is mediated mainly through the induction of regulatory T cells but probably also through other mechanisms, such as T cell anergy and clonal deletion.

Crypt–villus architecture

Crypts are glandular invaginations of the intestinal epithelium. Paneth cells localize to the base of crypts in the small intestine and secrete antimicrobial peptides. Intestinal stem cells in crypts divide continuously and provide rapid epithelial cell renewal. In the small intestine, villi are finger-like protrusions into the gut lumen, which increase the absorptive surface of the gut epithelium. Villi mainly consist of mature, absorptive enterocytes, but also contain mucus-secreting goblet cells.

Cathelicidin

Cathelicidins are a large family of antimicrobial peptides in ruminants. In mice and humans, only one cathelicidin — CRAMP or LL37, respectively — is expressed. The genes encoding CRAMP and LL37 are expressed by most epithelial cells, as well as granulocytes, and their expression is regulated at the level of transcription. They encode a highly conserved 'cathelin' sequence of 12 kDa at the amino terminus, followed by the mature antimicrobial peptide, which requires enzymatic cleavage to become active.

Defensins

A class of antimicrobial peptides with broad antibacterial, antifungal and, in part, antiviral activity. α-defensins are produced constitutively by small intestinal Paneth cells and, in humans, also by neutrophils, whereas many β-defensins are transcriptionally regulated and expressed by most epithelial cells.

RORγt+NKp46+ lymphocytes

A population of innate lymphoid cells in the intestinal lamina propria that expresses the transcription factor retinoic acid receptor-related orphan receptor-γt (RORγt) and the natural killer cell marker NKp46. RORγt+NKp46+ lymphocytes support the expression of the antimicrobial peptide REG3γ by epithelial cells through secretion of IL-22.

Cryptopatches

Clusters of KIT+IL-7R+THY1+ T cell progenitors found in the murine intestinal lamina propria. Cryptopatches are absent in germ-free mice.

Isolated lymphoid follicles

Small lymphoid aggregates located in the lamina propria of the small and large intestines that contain B cells, dendritic cells, stromal cells and some T cells and that might form germinal centres. In mice, isolated lymphoid follicles were shown to develop from cryptopatches and they are absent in germ-free animals.

Anaphylaxis

A severe and rapid allergic reaction triggered by the activation of high-affinity Fc receptors for IgE in sensitized individuals. Anaphylactic shock is the most severe type of anaphylaxis and can lead to death in minutes if left untreated. In various mouse models, it has been shown that IgG1 rather than IgE antibodies trigger the anaphylactic reaction.

Tight junctions

These are specialized intercellular junctions that seal the apical epithelium, in which two plasma membranes form a sealing gasket around a cell (also known as the zonula occludens). They are formed by several proteins, including occludin and claudin. Tight junctions prevent fluid moving through the intercellular gaps and prevent the lateral movement of membrane proteins between the apical and basolateral cellular domains.

Goblet cells

Mucus-producing cells that are found in the epithelial cell lining of the intestines and lungs.

Clara cells

Dome-shaped cells with short microvilli that are found in the small airways (bronchioles) of the lungs. These cells can secrete glycosaminoglycans to protect the lining of the bronchioles and are also known as bronchiolar exocrine cells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renz, H., Brandtzaeg, P. & Hornef, M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 12, 9–23 (2012). https://doi.org/10.1038/nri3112

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing