Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

An updated view of hypothalamic–vascular–pituitary unit function and plasticity

Key Points

  • The activity of hypothalamic neurons is modified by inputs leading to heterogeneous activity; a small proportion of the total population can drive pituitary hormone pulsatility

  • Neurohormone output can vary following neuron excitation according to the physiological status, which might also lead to declining neuroendocrine output with age

  • The release of hypothalamic factors into the blood is modified by alterations in the juxtaposition of nerve terminals with the vasculature and tanycytes in the median eminence

  • Cells in the pituitary gland form homotypic networks, and the organization and relationship of a network with the vasculature is distinct for each endocrine axis, which modifies responses to regulatory factors and patterns of output in response to demand

  • The reorganisation of the pituitary network can store long-term memories of increased output and enhance function on repeated challenge

  • Understanding the importance of coordinated hypothalamic–vasculature–pituitary function provides new understanding of a range of endocrine axes defects and targets for novel therapies

Abstract

The discoveries of novel functional adaptations of the hypothalamus and anterior pituitary gland for physiological regulation have transformed our understanding of their interaction. The activity of a small proportion of hypothalamic neurons can control complex hormonal signalling, which is disconnected from a simple stimulus and the subsequent hormone secretion relationship and is dependent on physiological status. The interrelationship of the terminals of hypothalamic neurons and pituitary cells with the vasculature has an important role in determining the pattern of neurohormone exposure. Cells in the pituitary gland form networks with distinct organizational motifs that are related to the duration and pattern of output, and modifications of these networks occur in different physiological states, can persist after cessation of demand and result in enhanced function. Consequently, the hypothalamus and pituitary can no longer be considered as having a simple stratified relationship: with the vasculature they form a tripartite system, which must function in concert for appropriate hypothalamic regulation of physiological processes, such as reproduction. An improved understanding of the mechanisms underlying these regulatory features has implications for current and future therapies that correct defects in hypothalamic–pituitary axes. In addition, recapitulating proper network organization will be an important challenge for regenerative stem cell treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A dynamic interplay between hypothalamic neuron output, the vasculature and the pituitary response alters hormone output.
Figure 2: Output of hypothalamic regulatory factors to the median eminence.
Figure 3: Pituitary cells form homotypic networks with distinct organizational motifs and relationships with the vasculature, which alter with the physiological status.
Figure 4: Updated view of the hypothalamic–vascular–pituitary unit.

Similar content being viewed by others

References

  1. Sandow, A. Excitation-contraction coupling in skeletal muscle. Pharmacol. Rev. 17, 265–320 (1965).

    CAS  PubMed  Google Scholar 

  2. Romano, N. et al. Plasticity of hypothalamic dopamine neurons during lactation results in dissociation of electrical activity and release. J. Neurosci. 33, 4424–4433 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smith, J. T. et al. Kisspeptin is essential for the full preovulatory LH surge and stimulates GnRH release from the isolated ovine median eminence. Endocrinology 152, 1001–1012 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Lim, N. F., Nowycky, M. C. & Bookman, R. J. Direct measurement of exocytosis and calcium currents in single vertebrate nerve terminals. Nature 344, 449–451 (1990).

    Article  CAS  PubMed  Google Scholar 

  5. Drouva, S. V., Epelbaum, J., Laplante, E. & Kordon, C. Calmodulin involvement on the Ca++-dependent release of LHRH and SRIF in vitro. Neuroendocrinology 38, 189–192 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Douglas, W. W. Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br. J. Pharmacol. 34, 451–474 (1968).

    Article  CAS  PubMed  Google Scholar 

  7. Tse, A., Tse, F. W., Almers, W. & Hille, B. Rhythmic exocytosis stimulated by GnRH-induced calcium oscillations in rat gonadotropes. Science 260, 82–84 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Lafont, C. et al. Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function. Proc. Natl. Acad. Sci. USA 107, 4465–4470 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thomas, P., Wong, J. G., Lee, A. K. & Almers, W. A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs. Neuron 11, 93–104 (1993).

    Article  CAS  PubMed  Google Scholar 

  10. Tse, A. & Lee, A. K. Voltage-gated Ca2+ channels and intracellular Ca2+ release regulate exocytosis in identified rat corticotrophs. J. Physiol. 528, 79–90 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Raisman, G. An urge to explain the incomprehensible: Geoffrey Harris and the discovery of the neural control of the pituitary gland. Annu. Rev. Neurosci. 20, 533–566 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Stojilkovic, S. S., Tabak, J. & Bertram, R. Ion channels and signaling in the pituitary gland. Endocr. Rev. 31, 845–915 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keenan, D. M. & Veldhuis, J. D. Pulsatility of hypothalamo-pituitary hormones: a challenge in quantification. Physiology (Bethesda) 31, 34–50 (2016).

    CAS  Google Scholar 

  14. Moenter, S. M. Leap of faith: does serum luteinizing hormone always accurately reflect central reproductive neuroendocrine activity? Neuroendocrinology 102, 256–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Petersenn, S. & Schulte, H. M. Structure and function of the growth-hormone-releasing hormone receptor. Vitam. Horm. 59, 35–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Bonnefont, X. et al. Revealing the large-scale network organization of growth hormone-secreting cells. Proc. Natl. Acad. Sci. USA 102, 16880–16885 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han, S. K., Todman, M. G. & Herbison, A. E. Endogenous GABA release inhibits the firing of adult gonadotropin-releasing hormone neurons. Endocrinology 145, 495–499 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Han, S. K., Lee, K., Bhattarai, J. P. & Herbison, A. E. Gonadotrophin-releasing hormone (GnRH) exerts stimulatory effects on GnRH neurons in intact adult male and female mice. J. Neuroendocrinol. 22, 188–195 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Dierschke, D. J., Bhattacharya, A. N., Atkinson, L. E. & Knobil, E. Circhoral oscillations of plasma LH levels in the ovariectomized rhesus monkey. Endocrinology 87, 850–853 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Carmel, P. W., Araki, S. & Ferin, M. Pituitary stalk portal blood collection in rhesus monkeys: evidence for pulsatile release of gonadotropin-releasing hormone (GnRH). Endocrinology 99, 243–248 (1976).

    Article  CAS  PubMed  Google Scholar 

  21. Knobil, E. The neuroendocrine control of the menstrual cycle. Recent Prog. Horm. Res. 36, 53–88 (1980).

    CAS  PubMed  Google Scholar 

  22. Clarke, I. J. & Cummins, J. T. The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes. Endocrinology 111, 1737–1739 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. Levine, J. E., Pau, K. Y., Ramirez, V. D. & Jackson, G. L. Simultaneous measurement of luteinizing hormone-releasing hormone and luteinizing hormone release in unanesthetized, ovariectomized sheep. Endocrinology 111, 1449–1455 (1982).

    Article  CAS  PubMed  Google Scholar 

  24. Caraty, A., Locatelli, A. & Martin, G. B. Biphasic response in the secretion of gonadotrophin-releasing hormone in ovariectomized ewes injected with oestradiol. J. Endocrinol. 123, 375–382 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Moenter, S. M., Brand, R. C. & Karsch, F. J. Dynamics of gonadotropin-releasing hormone (GnRH) secretion during the GnRH surge: insights into the mechanism of GnRH surge induction. Endocrinology 130, 2978–2984 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Levine, J. E. New concepts of the neuroendocrine regulation of gonadotropin surges in rats. Biol. Reprod. 56, 293–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Karsch, F. J., Bowen, J. M., Caraty, A., Evans, N. P. & Moenter, S. M. Gonadotropin-releasing hormone requirements for ovulation. Biol. Reprod. 56, 303–309 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Steyn, F. J. et al. Development of a methodology for and assessment of pulsatile luteinizing hormone secretion in juvenile and adult male mice. Endocrinology 154, 4939–4945 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Campos, P. & Herbison, A. E. Optogenetic activation of GnRH neurons reveals minimal requirements for pulsatile luteinizing hormone secretion. Proc. Natl. Acad. Sci. USA 111, 18387–18392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kokoris, G. J., Lam, N. Y., Ferin, M., Silverman, A. J. & Gibson, M. J. Transplanted gonadotropin-releasing hormone neurons promote pulsatile luteinizing hormone secretion in congenitally hypogonadal (hpg) male mice. Neuroendocrinology 48, 45–52 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Herbison, A. E., Porteous, R., Pape, J. R., Mora, J. M. & Hurst, P. R. Gonadotropin-releasing hormone neuron requirements for puberty, ovulation, and fertility. Endocrinology 149, 597–604 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Jasoni, C. L., Romano, N., Constantin, S., Lee, K. & Herbison, A. E. Calcium dynamics in gonadotropin-releasing hormone neurons. Front. Neuroendocrinol. 31, 259–269 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Lehman, M. N., Coolen, L. M. & Goodman, R. L. Minireview: kisspeptin/neurokinin B/dynorphin (KNDy) cells of the arcuate nucleus: a central node in the control of gonadotropin-releasing hormone secretion. Endocrinology 151, 3479–3489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Navarro, V. M. et al. Role of neurokinin B in the control of female puberty and its modulation by metabolic status. J. Neurosci. 32, 2388–2397 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Campbell, R. E., Gaidamaka, G., Han, S. K. & Herbison, A. E. Dendro-dendritic bundling and shared synapses between gonadotropin-releasing hormone neurons. Proc. Natl. Acad. Sci. USA 106, 10835–10840 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Herde, M. K., Iremonger, K. J., Constantin, S. & Herbison, A. E. GnRH neurons elaborate a long-range projection with shared axonal and dendritic functions. J. Neurosci. 33, 12689–12697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prevot, V. et al. Evidence that members of the TGFβ superfamily play a role in regulation of the GnRH neuroendocrine axis: expression of a type I serine-threonine kinase receptor for TGRβ and activin in GnRH neurones and hypothalamic areas of the female rat. J. Neuroendocrinol. 12, 665–670 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Knauf, C. et al. Evidence for a spontaneous nitric oxide release from the rat median eminence: influence on gonadotropin-releasing hormone release. Endocrinology 142, 2343–2350 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. De Seranno, S. et al. Vascular endothelial cells promote acute plasticity in ependymoglial cells of the neuroendocrine brain. J. Neurosci. 24, 10353–10363 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanchate, N. K. et al. Kisspeptin-GPR54 signaling in mouse NO-synthesizing neurons participates in the hypothalamic control of ovulation. J. Neurosci. 32, 932–945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bellefontaine, N. et al. Nitric oxide as key mediator of neuron-to-neuron and endothelia-to-glia communication involved in the neuroendocrine control of reproduction. Neuroendocrinology 93, 74–89 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Page, R. B. Pituitary blood flow. Am. J. Physiol. 243, E427–E442 (1982).

    CAS  PubMed  Google Scholar 

  43. Belchetz, P. E., Plant, T. M., Nakai, Y., Keogh, E. J. & Knobil, E. Hypophysial responses to continuous and intermittent delivery of hypopthalamic gonadotropin-releasing hormone. Science 202, 631–633 (1978).

    Article  CAS  PubMed  Google Scholar 

  44. Wildt, L. et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109, 376–385 (1981).

    Article  CAS  PubMed  Google Scholar 

  45. Pohl, C. R., Richardson, D. W., Hutchison, J. S., Germak, J. A. & Knobil, E. Hypophysiotropic signal frequency and the functioning of the pituitary-ovarian system in the rhesus monkey. Endocrinology 112, 2076–2080 (1983).

    Article  CAS  PubMed  Google Scholar 

  46. McArdle, C. A. & Roberson, M. S. Knobil and Neill's Physiology of Reproduction 4th edn 335–397 (Academic Press, 2015).

    Book  Google Scholar 

  47. Tsutsumi, R. & Webster, N. J. GnRH pulsatility, the pituitary response and reproductive dysfunction. Endocr. J. 56, 729–737 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cooke, B., Hegstrom, C. D., Villeneuve, L. S. & Breedlove, S. M. Sexual differentiation of the vertebrate brain: principles and mechanisms. Front. Neuroendocrinol. 19, 323–362 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Simerly, R. B. Organization and regulation of sexually dimorphic neuroendocrine pathways. Behav. Brain Res. 92, 195–203 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Levine, J. E. & Ramirez, V. D. Luteinizing hormone-releasing hormone release during the rat estrous cycle and after ovariectomy, as estimated with push-pull cannulae. Endocrinology 111, 1439–1448 (1982).

    Article  CAS  PubMed  Google Scholar 

  51. Sarkar, D. K., Chiappa, S. A., Fink, G. & Sherwood, N. M. Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature 264, 461–463 (1976).

    Article  CAS  PubMed  Google Scholar 

  52. Park, O. K. & Ramirez, V. D. Spontaneous changes in LHRH release during the rat estrous cycle, as measured with repetitive push-pull perfusions of the pituitary gland in the same female rats. Neuroendocrinology 50, 66–72 (1989).

    Article  CAS  PubMed  Google Scholar 

  53. Herbison, A. E. Control of puberty onset and fertility by gonadotropin-releasing hormone neurons. Nat. Rev. Endocrinol. 12, 452–466 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Plant, T. M. A comparison of the neuroendocrine mechanisms underlying the initiation of the preovulatory LH surge in the human, Old World monkey and rodent. Front. Neuroendocrinol. 33, 160–168 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Moenter, S. M., Caraty, A., Locatelli, A. & Karsch, F. J. Pattern of gonadotropin-releasing hormone (GnRH) secretion leading up to ovulation in the ewe: existence of a preovulatory GnRH surge. Endocrinology 129, 1175–1182 (1991).

    Article  CAS  PubMed  Google Scholar 

  56. Clarke, I. J. Variable patterns of gonadotropin-releasing hormone secretion during the estrogen-induced luteinizing hormone surge in ovariectomized ewes. Endocrinology 133, 1624–1632 (1993).

    Article  CAS  PubMed  Google Scholar 

  57. Caraty, A. et al. Nature and bioactivity of gonadotropin-releasing hormone (GnRH) secreted during the GnRH surge. Endocrinology 136, 3452–3460 (1995).

    Article  CAS  PubMed  Google Scholar 

  58. Kozlowski, G. P. & Coates, P. W. Ependymoneuronal specializations between LHRH fibers and cells of the cerebroventricular system. Cell Tissue Res. 242, 301–311 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. King, J. C. & Rubin, B. S. Dynamic alterations in luteinizing hormone-releasing hormone (LHRH) neuronal cell bodies and terminals of adult rats. Cell. Mol. Neurobiol. 15, 89–106 (1995).

    Article  CAS  PubMed  Google Scholar 

  60. Parkash, J. et al. Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nat. Commun. 6, 6385 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Giacobini, P. et al. Brain endothelial cells control fertility through ovarian-steroid-dependent release of semaphorin 3A. PLoS Biol. 12, e1001808 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. King, J. C. & Letourneau, R. J. Luteinizing hormone-releasing hormone terminals in the median eminence of rats undergo dramatic changes after gonadectomy, as revealed by electron microscopic image analysis. Endocrinology 134, 1340–1351 (1994).

    Article  CAS  PubMed  Google Scholar 

  63. Prevot, V. et al. Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94, 809–819 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Budry, L. et al. Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc. Natl. Acad. Sci. USA 108, 12515–12520 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alim, Z. et al. Gonadotrope plasticity at cellular and population levels. Endocrinology 153, 4729–4739 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thomas, S. G., Takahashi, M., Neill, J. D. & Clarke, I. J. Components of the neuronal exocytotic machinery in the anterior pituitary of the ovariectomised ewe and the effects of oestrogen in gonadotropes as studied with confocal microscopy. Neuroendocrinology 67, 244–259 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Barkan, A. L., Regiani, S. R., Duncan, J. A. & Marshall, J. C. Pituitary gonadotropin-releasing hormone receptors during gonadotropin surges in ovariectomized-estradiol-treated rats. Endocrinology 112, 1042–1048 (1983).

    Article  CAS  PubMed  Google Scholar 

  68. Qiao, S. et al. Molecular plasticity of male and female murine gonadotropes revealed by mRNA sequencing. Endocrinology 157, 1082–1093 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Navratil, A. M., Knoll, J. G., Whitesell, J. D., Tobet, S. A. & Clay, C. M. Neuroendocrine plasticity in the anterior pituitary: gonadotropin-releasing hormone-mediated movement in vitro and in vivo. Endocrinology 148, 1736–1744 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Schaeffer, M., Hodson, D. J., Lafont, C. & Mollard, P. Endocrine cells and blood vessels work in tandem to generate hormone pulses. J. Mol. Endocrinol. 47, R59–R66 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Padmanabhan, V. Polycystic ovary syndrome — “a riddle wrapped in a mystery inside an enigma”. J. Clin. Endocrinol. Metab. 94, 1883–1885 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. McCartney, C. R., Eagleson, C. A. & Marshall, J. C. Regulation of gonadotropin secretion: implications for polycystic ovary syndrome. Semin. Reprod. Med. 20, 317–326 (2002).

    Article  CAS  PubMed  Google Scholar 

  73. Francou, M. et al. Characterization of pituitary cell populations in rats with induced polycystic ovaries. Cells Tissues Organs 188, 310–319 (2008).

    Article  PubMed  Google Scholar 

  74. Roland, A. V. & Moenter, S. M. Reproductive neuroendocrine dysfunction in polycystic ovary syndrome: insight from animal models. Front. Neuroendocrinol. 35, 494–511 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cardoso, R. C., Puttabyatappa, M. & Padmanabhan, V. Steroidogenic versus metabolic programming of reproductive neuroendocrine, ovarian and metabolic dysfunctions. Neuroendocrinology 102, 226–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  76. Boehm, U. et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism—pathogenesis, diagnosis and treatment. Nat. Rev. Endocrinol. 11, 547–564 (2015).

    Article  PubMed  Google Scholar 

  77. Pitteloud, N., Durrani, S., Raivio, T. & Sykiotis, G. P. Complex genetics in idiopathic hypogonadotropic hypogonadism. Front. Horm. Res. 39, 142–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Christin-Maitre, S. et al. Grossesses obtenues par administration pulsatile de GnRH: résultats d'une large étude rétrospective multicentrique. J. Gynecol. Obstet. Biol. Reprod. (Paris) 36, 8–12 (in French) (2007).

    Article  CAS  Google Scholar 

  79. Sidhoum, V. F. et al. Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J. Clin. Endocrinol. Metab. 99, 861–870 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Grattan, D. R. & Kokay, I. C. Prolactin: a pleiotropic neuroendocrine hormone. J. Neuroendocrinol. 20, 752–763 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Arbogast, L. A. & Voogt, J. L. Hyperprolactinemia increases and hypoprolactinemia decreases tyrosine hydroxylase messenger ribonucleic acid levels in the arcuate nuclei, but not the substantia nigra or zona incerta. Endocrinology 128, 997–1005 (1991).

    Article  CAS  PubMed  Google Scholar 

  82. Stagkourakis, S., Kim, H., Lyons, David, J. & Broberger, C. Dopamine autoreceptor regulation of a hypothalamic dopaminergic network. Cell Rep. 15, 735–747 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lyons, D. J., Horjales-Araujo, E. & Broberger, C. Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin-releasing hormone. Neuron 65, 217–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  84. Freeman, M. E., Reichert, L. E. Jr & Neill, J. D. Regulation of the proestrus surge of prolactin secretion by gonadotropin and estrogens in the rat. Endocrinology 90, 232–238 (1972).

    Article  CAS  PubMed  Google Scholar 

  85. Butcher, R. L., Fugo, N. W. & Collins, W. E. Semicircadian rhythm in plasma levels of prolactin during early gestation in the rat. Endocrinology 90, 1125–1127 (1972).

    Article  CAS  PubMed  Google Scholar 

  86. Larsen, C. M. & Grattan, D. R. Prolactin-induced mitogenesis in the subventricular zone of the maternal brain during early pregnancy is essential for normal postpartum behavioral responses in the mother. Endocrinology 151, 3805–3814 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Mai, L. M., Shieh, K. R. & Pan, J. T. Circadian changes of serum prolactin levels and tuberoinfundibular dopaminergic neuron activities in ovariectomized rats treated with or without estrogen: the role of the suprachiasmatic nuclei. Neuroendocrinology 60, 520–526 (1994).

    Article  CAS  PubMed  Google Scholar 

  88. Egli, M., Bertram, R., Sellix, M. T. & Freeman, M. E. Rhythmic secretion of prolactin in rats: action of oxytocin coordinated by vasoactive intestinal polypeptide of suprachiasmatic nucleus origin. Endocrinology 145, 3386–3394 (2004).

    Article  CAS  PubMed  Google Scholar 

  89. Hodson, D. J. & Mollard, P. Navigating pituitary structure and function - defining a roadmap for hormone secretion. J. Neuroendocrinol. 25, 674–675 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Hodson, D. J. et al. Coordination of calcium signals by pituitary endocrine cells in situ. Cell Calcium 51, 222–230 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Featherstone, K. et al. Spatially coordinated dynamic gene transcription in living pituitary tissue. eLife 5, e08494 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Harper, C. V. et al. Dynamic organisation of prolactin gene expression in living pituitary tissue. J. Cell Sci. 123, 424–430 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Long, T. et al. Quantifying the integration of quorum-sensing signals with single-cell resolution. PLoS Biol. 7, e68 (2009).

    PubMed  Google Scholar 

  94. Weber, W. et al. Streptomyces-derived quorum-sensing systems engineered for adjustable transgene expression in mammalian cells and mice. Nucleic Acids Res. 31, e71 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Andrews, Z. B., Kokay, I. C. & Grattan, D. R. Dissociation of prolactin secretion from tuberoinfundibular dopamine activity in late pregnant rats. Endocrinology 142, 2719–2724 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Ciofi, P. et al. Plasticity in expression of immunoreactivity for neuropeptide Y, enkephalins and neurotensin in the hypothalamic tubero-infundibular dopaminergic system during lactation in mice. J. Neuroendocrinol. 5, 599–602 (1993).

    Article  CAS  PubMed  Google Scholar 

  97. Merchenthaler, I. Induction of enkephalin in tuberoinfundibular dopaminergic neurons during lactation. Endocrinology 133, 2645–2651 (1993).

    Article  CAS  PubMed  Google Scholar 

  98. Le Tissier, P. R., Hodson, D. J., Martin, A. O., Romano, N. & Mollard, P. Plasticity of the prolactin (PRL) axis: mechanisms underlying regulation of output in female mice. Adv. Exp. Med. Biol. 846, 139–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Castrique, E., Fernandez-Fuente, M., Le Tissier, P., Herman, A. & Levy, A. Use of a prolactin-Cre/ROSA-YFP transgenic mouse provides no evidence for lactotroph transdifferentiation after weaning, or increase in lactotroph/somatotroph proportion in lactation. J. Endocrinol. 205, 49–60 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hodson, D. J. et al. Existence of long-lasting experience-dependent plasticity in endocrine cell networks. Nat. Commun. 3, 605 (2012).

    Article  PubMed  CAS  Google Scholar 

  101. Guillou, A. et al. Assessment of lactotroph axis functionality in mice: longitudinal monitoring of PRL secretion by ultrasensitive-ELISA. Endocrinology 156, 1924–1930 (2015).

    Article  CAS  PubMed  Google Scholar 

  102. Byrnes, E. M. & Bridges, R. S. Lactation reduces prolactin levels in reproductively experienced female rats. Horm. Behav. 48, 278–282 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Musey, V. C., Collins, D. C., Musey, P. I., Martino-Saltzman, D. & Preedy, J. R. Long-term effect of a first pregnancy on the secretion of prolactin. N. Engl. J. Med. 316, 229–234 (1987).

    Article  CAS  PubMed  Google Scholar 

  104. Byrnes, E. M. & Bridges, R. S. Reproductive experience and expression of dopamine D2 receptor mRNA: a possible mechanism for reduced prolactin secretion in primiparous rats. J. Neuroendocrinol. 19, 773–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  105. Wong, A., Eloy, J. A., Couldwell, W. T. & Liu, J. K. Update on prolactinomas. Part 1: clinical manifestations and diagnostic challenges. J. Clin. Neurosci. 22, 1562–1567 (2015).

    Article  PubMed  Google Scholar 

  106. Holt, R. I. & Peveler, R. C. Antipsychotics and hyperprolactinaemia: mechanisms, consequences and management. Clin. Endocrinol. (Oxf.) 74, 141–147 (2011).

    Article  CAS  Google Scholar 

  107. Melmed, S. et al. Diagnosis and treatment of hyperprolactinemia: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 96, 273–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  108. Wong, A., Eloy, J. A., Couldwell, W. T. & Liu, J. K. Update on prolactinomas. Part 2: treatment and management strategies. J. Clin. Neurosci. 22, 1568–1574 (2015).

    Article  PubMed  Google Scholar 

  109. Brown, R. S., Herbison, A. E. & Grattan, D. R. Prolactin regulation of kisspeptin neurones in the mouse brain and its role in the lactation-induced suppression of kisspeptin expression. J. Neuroendocrinol. 26, 898–908 (2014).

    Article  CAS  PubMed  Google Scholar 

  110. Sonigo, C. et al. Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. J. Clin. Invest. 122, 3791–3795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li, Q., Rao, A., Pereira, A., Clarke, I. J. & Smith, J. T. Kisspeptin cells in the ovine arcuate nucleus express prolactin receptor but not melatonin receptor. J. Neuroendocrinol. 23, 871–882 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Adcock, C. J. et al. The use of an automated microsampling system for the characterization of growth hormone pulsatility in newborn babies. Pediatr. Res. 42, 66–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  113. Coxam, V., Davicco, M. J., Robelin, J. & Barlet, J. P. Growth hormone secretory pattern and somatomedin C plasma concentrations in newborn calves. J. Dev. Physiol. 9, 113–121 (1987).

    CAS  PubMed  Google Scholar 

  114. Davicco, M. J. et al. Growth hormone (GH) secretory pattern and GH response to GH-releasing factor (GRF) or thyrotropin-releasing hormone (TRH) in newborn foals. J. Dev. Physiol. 19, 143–147 (1993).

    CAS  PubMed  Google Scholar 

  115. Robinson, I. C. A. F. & Hindmarsh, P. C. Comprehensive Physiology (John Wiley & Sons, 2010).

    Google Scholar 

  116. Tannenbaum, G. S. Genesis of episodic growth hormone secretion. J. Pediatr. Endocrinol. 6, 273–282 (1993).

    Article  CAS  PubMed  Google Scholar 

  117. Steyn, F. J., Tolle, V., Chen, C. & Epelbaum, J. Neuroendocrine regulation of growth hormone secretion. Compr. Physiol. 6, 687–735 (2016).

    Article  PubMed  Google Scholar 

  118. Balthasar, N. et al. Growth hormone-releasing hormone (GHRH) neurons in GHRH-enhanced green fluorescent protein transgenic mice: a ventral hypothalamic network. Endocrinology 144, 2728–2740 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Gouty-Colomer, L. A. et al. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons. Endocrinology 151, 5762–5774 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Romero, M. I. & Phelps, C. J. Identification of growth hormone-releasing hormone and somatostatin neurons projecting to the median eminence in normal and growth hormone-deficient Ames dwarf mice. Neuroendocrinology 65, 107–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  121. Chowen, J. A., Frago, L. M. & Argente, J. The regulation of GH secretion by sex steroids. Eur. J. Endocrinol. 151 (Suppl. 3), 95–100 (2004).

    Article  Google Scholar 

  122. Baccam, N. et al. Dual-level afferent control of growth hormone-releasing hormone (GHRH) neurons in GHRH-green fluorescent protein transgenic mice. J. Neurosci. 27, 1631–1641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Osterstock, G. et al. Somatostatin triggers rhythmic electrical firing in hypothalamic GHRH neurons. Sci. Rep. 6, 24394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sanchez-Cardenas, C. et al. Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal steroids in adulthood. Proc. Natl. Acad. Sci. USA 107, 21878–21883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Schaeffer, M. et al. Influence of estrogens on GH-cell network dynamics in females: a live in situ imaging approach. Endocrinology 152, 4789–4799 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Alatzoglou, K. S., Webb, E. A., Le Tissier, P. & Dattani, M. T. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr. Rev. 35, 376–432 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Pekic, S. & Popovic, V. Alternative causes of hypopituitarism: traumatic brain injury, cranial irradiation, and infections. Handb. Clin. Neurol. 124, 271–290 (2014).

    Article  PubMed  Google Scholar 

  128. Hindmarsh, P. C. & Dattani, M. T. Use of growth hormone in children. Nat. Clin. Pract. Endocrinol. Metab. 2, 260–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Andoniadou, C. L. et al. Sox2+ stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor-inducing potential. Cell Stem Cell 13, 433–445 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. Olarescu, N. C. & Bollerslev, J. The impact of adipose tissue on insulin resistance in acromegaly. Trends Endocrinol. Metab. 27, 226–237 (2016).

    Article  CAS  PubMed  Google Scholar 

  131. Dimaraki, E. V., Jaffe, C. A., DeMott-Friberg, R., Chandler, W. F. & Barkan, A. L. Acromegaly with apparently normal GH secretion: implications for diagnosis and follow-up. J. Clin. Endocrinol. Metab. 87, 3537–3542 (2002).

    Article  CAS  PubMed  Google Scholar 

  132. Holly, J. M. et al. Inter-relations between growth hormone, insulin, insulin-like growth factor-I (IGF-I), IGF-binding protein-1 (IGFBP-1) and sex hormone-binding globulin in acromegaly. Clin. Endocrinol. (Oxf.) 34, 275–280 (1991).

    Article  CAS  Google Scholar 

  133. Narayanaswamy, S. et al. Subcutaneous infusion of kisspeptin-54 stimulates gonadotrophin release in women and the response correlates with basal oestradiol levels. Clin. Endocrinol. (Oxf.) 84, 939–945 (2016).

    Article  CAS  Google Scholar 

  134. Alonso, G. et al. Selective alteration at the growth-hormone-releasing-hormone nerve terminals during aging in GHRH-green fluorescent protein mice. Aging Cell 6, 197–207 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Castinetti, F., Davis, S. W., Brue, T. & Camper, S. A. Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr. Rev. 32, 453–471 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Andoniadou, C. L. et al. Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol. 124, 259–271 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Eckstrum, K. S., Weis, K. E., Baur, N. G., Yoshihara, Y. & Raetzman, L. T. Icam5 expression exhibits sex differences in the neonatal pituitary and is regulated by estradiol and bisphenol A. Endocrinology 157, 1408–1420 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Le Tissier, P. R. & Mollard, P. Bisphenol A effects on gonadotroph function: disruption of pituitary cell-cell communication? Endocrinology 157, 1324–1325 (2016).

    Article  CAS  PubMed  Google Scholar 

  139. Le Tissier, P. R. et al. Anterior pituitary cell networks. Front. Neuroendocrinol. 33, 252–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Mollard, P., Hodson, D. J., Lafont, C., Rizzoti, K. & Drouin, J. A tridimensional view of pituitary development and function. Trends Endocrinol. Metabolism 23, 261–269 (2012).

    Article  CAS  Google Scholar 

  141. Schaeffer, M., Hodson, D. J., Lafont, C. & Mollard, P. Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary. Eur. J. Neurosci. 32, 2087–2095 (2010).

    Article  PubMed  Google Scholar 

  142. Ward, R. D., Stone, B. M., Raetzman, L. T. & Camper, S. A. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol. Endocrinol. 20, 1378–1390 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Waite, E. et al. Different degrees of somatotroph ablation compromise pituitary growth hormone cell network structure and other pituitary endocrine cell types. Endocrinology 151, 234–243 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Denef, C. Paracrinicity: the story of 30 years of cellular pituitary crosstalk. J. Neuroendocrinol. 20, 1–70 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank F. Castinetti (Aix-Marseille Universite, France) for helpful comments and suggestions. P.L.T. was supported by a grant from the Biotechnology and Biological Sciences Research Council, UK, (BB/N007026/1). N.R. was supported by a Medical Research Council, UK, project grant (MR/J008893/1). D.J.H. was supported by an R.D. Lawrence Fellowship, Diabetes UK (12/0004431); European Foundation for the Study of Diabetes/Novo Nordisk Rising Star and Birmingham Fellowships; a Medical Research Council, UK project grant (MR/N00275X/1); Imperial Confidence in Concept, UK, and Wellcome Trust Institutional Support Awards, UK; and an European Research Council (ERC) Starting Grant (OptoBETA; 715884). P.M. was supported by funding from the Agence Nationale de la Recherche (ANR 12 BSV1 0032–01 and ANR-15-CE14-0012-01); INSERM; Centre National de la Recherche Scientifique; Université de Montpellier; Fondation pour la Recherche Médicale (DEQ20150331732); and IPAM-Biocampus of Montpellier and France-Bioimaging, all in France.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Paul Le Tissier or Patrice Mollard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Tissier, P., Campos, P., Lafont, C. et al. An updated view of hypothalamic–vascular–pituitary unit function and plasticity. Nat Rev Endocrinol 13, 257–267 (2017). https://doi.org/10.1038/nrendo.2016.193

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2016.193

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing