Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pituitary crosstalk with bone, adipose tissue and brain

Abstract

Traditional textbook physiology has ascribed unitary functions to hormones from the anterior and posterior pituitary gland, mainly in the regulation of effector hormone secretion from endocrine organs. However, the evolutionary biology of pituitary hormones and their receptors provides evidence for a broad range of functions in vertebrate physiology. Over the past decade, we and others have discovered that thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotropic hormone, prolactin, oxytocin and arginine vasopressin act directly on somatic organs, including bone, adipose tissue and liver. New evidence also indicates that pituitary hormone receptors are expressed in brain regions, nuclei and subnuclei. These studies have prompted us to attribute the pathophysiology of certain human diseases, including osteoporosis, obesity and neurodegeneration, at least in part, to changes in pituitary hormone levels. This new information has identified actionable therapeutic targets for drug discovery.

Key points

  • Contrary to textbook physiology, pituitary hormones have ubiquitous functions and are the basis of important regulatory circuits that continue to evolve.

  • Endocrine diseases, such as osteoporosis, that were traditionally attributed to a single effector hormone are far more complicated than originally thought.

  • Pituitary hormones, such as follicle-stimulating hormone, act directly on both peripheral and central targets to contribute to the development of several diseases, such as osteoporosis, obesity and Alzheimer disease.

  • The pituitary–multiorgan circuitry could be exploited therapeutically to prevent and treat diseases driven by pituitary hormones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diversity of pituitary hormone action beyond the traditional effector functions.
Fig. 2: Pituitary hormone directly regulates bone cells.
Fig. 3: Pituitary hormones regulate adipose tissue mass accrual and body composition.

Similar content being viewed by others

References

  1. Rosen, E. D. & Carter-Su, C. in Williams Textbook of Endocrinology (eds Melmed, S. et al.) Ch. 2, 13–41 (Elsevier, 2020).

  2. Abe, E. et al. TSH is a negative regulator of skeletal remodeling. Cell 115, 151–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Liu, P. et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546, 107–112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiong, J. et al. FSH blockade improves cognition in mice with Alzheimer’s disease. Nature 603, 470–476 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gera, S. et al. FSH-blocking therapeutic for osteoporosis. eLife 11, e78022 (2022).

    Google Scholar 

  7. Gera, S. et al. First-in-class humanized FSH blocking antibody targets bone and fat. Proc. Natl Acad. Sci. USA 117, 28971–28979 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamashita, K. & Kitano, T. Molecular evolution of the oxytocin–oxytocin receptor system in eutherians. Mol. Phylogenet. Evol. 67, 520–528 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Knobloch, H. S. & Grinevich, V. Evolution of oxytocin pathways in the brain of vertebrates. Front. Behav. Neurosci. 8, 31 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gimpl, G. & Fahrenholz, F. The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629–683 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kleinau, G. & Krause, G. Thyrotropin and homologous glycoprotein hormone receptors: structural and functional aspects of extracellular signaling mechanisms. Endocr. Rev. 30, 133–151 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Davies, T., Marians, R. & Latif, R. The TSH receptor reveals itself. J. Clin. Invest. 110, 161–164 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bogerd, J., Granneman, J. C., Schulz, R. W. & Vischer, H. F. Fish FSH receptors bind LH: how to make the human FSH receptor to be more fishy? Gen. Comp. Endocrinol. 142, 34–43 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Kobayashi, T. & Andersen, O. The gonadotropin receptors FSH-R and LH-R of Atlantic halibut (Hippoglossus hippoglossus), 1: isolation of multiple transcripts encoding full-length and truncated variants of FSH-R. Gen. Comp. Endocrinol. 156, 584–594 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Cooray, S. N. & Clark, A. J. Melanocortin receptors and their accessory proteins. Mol. Cell Endocrinol. 331, 215–221 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Wilson, M. G. et al. Proopiolipomelanocortin peptides in normal pituitary, pituitary tumor, and plasma of normal and Cushing’s horses. Endocrinology 110, 941–954 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Baudet, M. L., Sanders, E. J. & Harvey, S. Retinal growth hormone in the chick embryo. Endocrinology 144, 5459–5468 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Harvey, S., Kakebeeke, M. & Sanders, E. J. Growth hormone localization in the neural retina and retinal pigmented epithelium of embryonic chicks. J. Mol. Neurosci. 22, 139–145 (2004).

    Article  PubMed  Google Scholar 

  20. Martinez-Moreno, C. G. et al. Growth hormone protects against kainate excitotoxicity and induces BDNF and NT3 expression in chicken neuroretinal cells. Exp. Eye Res. 166, 1–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Harvey, S. & Aramburo, C. Growth hormone: not just a pituitary endocrine. J. Endocr. Disord. 4, 1024 (2017).

    Google Scholar 

  22. Martin, B. T., List, E. O., Kopchick, J. J., Sauve, Y. & Harvey, S. Selective inner retinal dysfunction in growth hormone transgenic mice. Growth Horm. IGF Res. 21, 219–227 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimbly, C., Martin, B., Karpinski, E. & Harvey, S. Growth hormone production and action in N1E-115 neuroblastoma cells. J. Mol. Neurosci. 39, 117–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. de Mello-Coelho, V. et al. Growth hormone and its receptor are expressed in human thymic cells. Endocrinology 139, 3837–3842 (1998).

    Article  PubMed  Google Scholar 

  25. Hull, K. L. & Harvey, S. Growth hormone and reproduction: a review of endocrine and autocrine/paracrine interactions. Int. J. Endocrinol. 2014, 234014 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schwarzler, P. et al. Selective growth hormone/placental lactogen gene transcription and hormone production in pre- and postmenopausal human ovaries. J. Clin. Endocrinol. Metab. 82, 3337–3341 (1997).

    CAS  PubMed  Google Scholar 

  27. Hull, K. L. & Harvey, S. Growth hormone: roles in male reproduction. Endocrine 13, 243–250 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Baliram, R. et al. Thyroid and bone: macrophage-derived TSH-beta splice variant increases murine osteoblastogenesis. Endocrinology 154, 4919–4926 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baliram, R., Latif, R., Morshed, S. A., Zaidi, M. & Davies, T. F. T3 regulates a human macrophage-derived TSH-beta splice variant: implications for human bone biology. Endocrinology 157, 3658–3667 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vincent, B. H. et al. Bone marrow cells produce a novel TSHbeta splice variant that is upregulated in the thyroid following systemic virus infection. Genes Immun. 10, 18–26 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Smith, E. M., Phan, M., Kruger, T. E., Coppenhaver, D. H. & Blalock, J. E. Human lymphocyte production of immunoreactive thyrotropin. Proc. Natl Acad. Sci. USA 80, 6010–6013 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harbour, D. V., Kruger, T. E., Coppenhaver, D., Smith, E. M. & Meyer, W. J. 3rd Differential expression and regulation of thyrotropin (TSH) in T cell lines. Mol. Cell. Endocrinol. 64, 229–241 (1989).

    Article  CAS  PubMed  Google Scholar 

  33. Klein, J. R. & Wang, H. C. Characterization of a novel set of resident intrathyroidal bone marrow-derived hematopoietic cells: potential for immune–endocrine interactions in thyroid homeostasis. J. Exp. Biol. 207, 55–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Colaianni, G. et al. Regulated production of the pituitary hormone oxytocin from murine and human osteoblasts. Biochem. Biophys. Res. Commun. 411, 512–515 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Colaianni, G. et al. Bone marrow oxytocin mediates the anabolic action of estrogen on the skeleton. J. Biol. Chem. 287, 29159–29167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yakar, S. et al. Circulating levels of IGF-1 directly regulate bone growth and density. J. Clin. Invest. 110, 771–781 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Jesus, K., Wang, X. & Liu, J. L. A general IGF-I overexpression effectively rescued somatic growth and bone deficiency in mice caused by growth hormone receptor knockout. Growth Factors 27, 438–447 (2009).

    Article  PubMed  Google Scholar 

  38. Bachrach, L. K. et al. Bone mineral, histomorphometry, and body composition in adults with growth hormone receptor deficiency. J. Bone Min. Res. 13, 415–421 (1998).

    Article  CAS  Google Scholar 

  39. Fritton, J. C. et al. Growth hormone protects against ovariectomy-induced bone loss in states of low circulating insulin-like growth factor (IGF-1). J. Bone Min. Res. 25, 235–246 (2010).

    Article  CAS  Google Scholar 

  40. Sun, L. et al. Intermittent recombinant TSH injections prevent ovariectomy-induced bone loss. Proc. Natl Acad. Sci. USA 105, 4289–4294 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Baliram, R. et al. Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Invest. 122, 3737–3741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim, S. M. et al. Thyrotropin, hyperthyroidism, and bone mass. J. Clin. Endocrinol. Metab. 106, e4809–e4821 (2021).

    PubMed  PubMed Central  Google Scholar 

  43. Novack, D. V. TSH, the bone suppressing hormone. Cell 115, 129–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Hase, H. et al. TNFalpha mediates the skeletal effects of thyroid-stimulating hormone. Proc. Natl Acad. Sci. USA 103, 12849–12854 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ma, R., Morshed, S., Latif, R., Zaidi, M. & Davies, T. F. The influence of thyroid-stimulating hormone and thyroid-stimulating hormone receptor antibodies on osteoclastogenesis. Thyroid 21, 897–906 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamoah, K. et al. High-mobility group box proteins modulate tumor necrosis factor-alpha expression in osteoclastogenesis via a novel deoxyribonucleic acid sequence. Mol. Endocrinol. 22, 1141–1153 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sun, L. et al. Genetic confirmation for a central role for TNFalpha in the direct action of thyroid stimulating hormone on the skeleton. Proc. Natl Acad. Sci. USA 110, 9891–9896 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Baliram, R. et al. Thyroid-stimulating hormone induces a Wnt-dependent, feed-forward loop for osteoblastogenesis in embryonic stem cell cultures. Proc. Natl Acad. Sci. USA 108, 16277–16282 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sampath, T. K. et al. Thyroid-stimulating hormone restores bone volume, microarchitecture, and strength in aged ovariectomized rats. J. Bone Min. Res. 22, 849–859 (2007).

    Article  CAS  Google Scholar 

  50. Mazziotti, G. et al. Recombinant human TSH modulates in vivo C-telopeptides of type-1 collagen and bone alkaline phosphatase, but not osteoprotegerin production in postmenopausal women monitored for differentiated thyroid carcinoma. J. Bone Min. Res. 20, 480–486 (2005).

    Article  CAS  Google Scholar 

  51. Karga, H. et al. The effects of recombinant human TSH on bone turnover in patients after thyroidectomy. J. Bone Min. Metab. 28, 35–41 (2010).

    Article  CAS  Google Scholar 

  52. Martini, G. et al. The effects of recombinant TSH on bone turnover markers and serum osteoprotegerin and RANKL levels. Thyroid 18, 455–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Cho, S. W. et al. The presence of thyroid-stimulation blocking antibody prevents high bone turnover in untreated premenopausal patients with Graves’ disease. PLoS ONE 10, e0144599 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. von Recklinghausen, F. in Festschrift für Rudolf Virchow (ed. Reimer, G.) (Druck und Verlag von Georg Reimer, 1891).

  55. Blum, M. R. et al. Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313, 2055–2065 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Flynn, R. W. et al. Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J. Clin. Endocrinol. Metab. 95, 186–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Kim, M. K. et al. The effects of thyrotropin-suppressing therapy on bone metabolism in patients with well-differentiated thyroid carcinoma. Bone 71, 101–105 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. La Vignera, S. et al. l-thyroxin treatment and post-menopausal osteoporosis: relevance of the risk profile present in clinical history. Minerva Ginecol. 60, 475–484 (2008).

    PubMed  Google Scholar 

  59. Svare, A. et al. Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT 2 study. Eur. J. Endocrinol. 161, 779–786 (2009).

    Article  CAS  PubMed  Google Scholar 

  60. Bauer, D. C., Ettinger, B., Nevitt, M. C. & Stone, K. L., Study of Osteoporotic Fractures Research Group. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134, 561–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, L. Y. et al. Thyrotropin suppression increases the risk of osteoporosis without decreasing recurrence in ATA low- and intermediate-risk patients with differentiated thyroid carcinoma. Thyroid 25, 300–307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karimifar, M. et al. Effects of levothyroxine and thyroid stimulating hormone on bone loss in patients with primary hypothyroidism. J. Res. Pharm. Pract. 3, 83–87 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Abrahamsen, B. et al. The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J. Bone Min. Res. 30, 898–905 (2015).

    Article  CAS  Google Scholar 

  64. Abrahamsen, B. et al. Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures — the OPENTHYRO register cohort. J. Bone Min. Res. 29, 2040–2050 (2014).

    Article  CAS  Google Scholar 

  65. Grimnes, G., Emaus, N., Joakimsen, R. M., Figenschau, Y. & Jorde, R. The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Tromso study. Thyroid 18, 1147–1155 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Morris, M. S. The association between serum thyroid-stimulating hormone in its reference range and bone status in postmenopausal American women. Bone 40, 1128–1134 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lee, S. J. et al. Low normal TSH levels are associated with impaired BMD and hip geometry in the elderly. Aging Dis. 7, 734–743 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ding, B. et al. Low thyroid stimulating hormone levels are associated with low bone mineral density in femoral neck in elderly women. Arch. Med. Res. 47, 310–314 (2016).

    Article  PubMed  Google Scholar 

  69. Waring, A. C. et al. A prospective study of thyroid function, bone loss, and fractures in older men: the MrOS study. J. Bone Min. Res. 28, 472–479 (2013).

    Article  CAS  Google Scholar 

  70. Acar, B. et al. Evaluation of thyroid function status among postmenopausal women with and without osteoporosis. Int. J. Gynaecol. Obstet. 134, 53–57 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Noh, H. M., Park, Y. S., Lee, J. & Lee, W. A cross-sectional study to examine the correlation between serum TSH levels and the osteoporosis of the lumbar spine in healthy women with normal thyroid function. Osteoporos. Int. 26, 997–1003 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. van der Deure, W. M. et al. Effects of serum TSH and FT4 levels and the TSHR-Asp727Glu polymorphism on bone: the Rotterdam study. Clin. Endocrinol. 68, 175–181 (2008).

    Article  Google Scholar 

  73. Albagha, O. M. E., Natarajan, R., Reid, D. M. & Ralston, S. H. The D727E polymorphism of the human thyroid stimulating hormone receptor is associated with bone mineral density and bone loss in women from the UK. J. Bone Min. Res. 20, S341 (2005).

    Google Scholar 

  74. Liu, R. D. et al. The Glu727 allele of thyroid stimulating hormone receptor gene is associated with osteoporosis. N. Am. J. Med. Sci. 4, 300–304 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  75. van Vliet, N. A. et al. Thyroid stimulating hormone and bone mineral density: evidence from a two-sample Mendelian randomization study and a candidate gene association study. J. Bone Min. Res. 33, 1318–1325 (2018).

    Article  Google Scholar 

  76. Liu, S., Cheng, Y., Fan, M., Chen, D. & Bian, Z. FSH aggravates periodontitis-related bone loss in ovariectomized rats. J. Dent. Res. 89, 366–371 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Liu, S., Cheng, Y., Xu, W. & Bian, Z. Protective effects of follicle-stimulating hormone inhibitor on alveolar bone loss resulting from experimental periapical lesions in ovariectomized rats. J. Endod. 36, 658–663 (2010).

    Article  PubMed  Google Scholar 

  78. Robinson, L. J. et al. FSH-receptor isoforms and FSH-dependent gene transcription in human monocytes and osteoclasts. Biochem. Biophys. Res. Commun. 394, 12–17 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun, L. et al. Further evidence for direct pro-resorptive actions of FSH. Biochem. Biophys. Res. Commun. 394, 6–11 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu, Y. et al. Bone microenvironment specific roles of ITAM adapter signaling during bone remodeling induced by acute estrogen-deficiency. PLoS ONE 2, e586 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang, J. et al. Follicle-stimulating hormone increases the risk of postmenopausal osteoporosis by stimulating osteoclast differentiation. PLoS ONE 10, e0134986 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Allan, C. M. et al. Follicle-stimulating hormone increases bone mass in female mice. Proc. Natl Acad. Sci. USA 107, 22629–22634 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ritter, V. et al. Follicle-stimulating hormone does not impact male bone mass in vivo or human male osteoclasts in vitro. Calcif. Tissue Int. 82, 383–391 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Feng, Y. et al. Live imaging of follicle stimulating hormone receptors in gonads and bones using near infrared II fluorophore. Chem. Sci. 8, 3703–3711 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ji, Y. et al. Epitope-specific monoclonal antibodies to FSHbeta increase bone mass. Proc. Natl Acad. Sci. USA 115, 2192–2197 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Meher, B. R., Dixit, A., Bousfield, G. R. & Lushington, G. H. Glycosylation effects on FSH–FSHR interaction dynamics: a case study of different FSH glycoforms by molecular dynamics simulations. PLoS ONE 10, e0137897 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cannon, J. G., Kraj, B. & Sloan, G. Follicle-stimulating hormone promotes RANK expression on human monocytes. Cytokine 53, 141–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Iqbal, J., Sun, L., Kumar, T. R., Blair, H. C. & Zaidi, M. Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc. Natl Acad. Sci. USA 103, 14925–14930 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cannon, J. G. et al. Follicle-stimulating hormone, interleukin-1, and bone density in adult women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298, R790–R798 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Gertz, E. R. et al. Contribution of serum inflammatory markers to changes in bone mineral content and density in postmenopausal women: a 1-year investigation. J. Clin. Densitom. 13, 277–282 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhu, L. L. et al. Blocking antibody to the beta-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl Acad. Sci. USA 109, 14574–14579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gao, J. et al. Altered ovarian function affects skeletal homeostasis independent of the action of follicle-stimulating hormone. Endocrinology 148, 2613–2621 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. Danilovich, N. et al. Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice. Endocrinology 141, 4295–4308 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Abel, M. H., Huhtaniemi, I., Pakarinen, P., Kumar, T. R. & Charlton, H. M. Age-related uterine and ovarian hypertrophy in FSH receptor knockout and FSHbeta subunit knockout mice. Reproduction 125, 165–173 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Oz, O. K. et al. Bone has a sexually dimorphic response to aromatase deficiency. J. Bone Min. Res. 15, 507–514 (2000).

    Article  CAS  Google Scholar 

  96. Couse, J. F., Yates, M. M., Walker, V. R. & Korach, K. S. Characterization of the hypothalamic-pituitary-gonadal axis in estrogen receptor (ER) null mice reveals hypergonadism and endocrine sex reversal in females lacking ERalpha but not ERbeta. Mol. Endocrinol. 17, 1039–1053 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Sims, N. A. et al. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone 30, 18–25 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Khalid, A. B. & Krum, S. A. Estrogen receptors alpha and beta in bone. Bone 87, 130–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Devleta, B., Adem, B. & Senada, S. Hypergonadotropic amenorrhea and bone density: new approach to an old problem. J. Bone Min. Metab. 22, 360–364 (2004).

    Article  Google Scholar 

  100. Kawai, H., Furuhashi, M. & Suganuma, N. Serum follicle-stimulating hormone level is a predictor of bone mineral density in patients with hormone replacement therapy. Arch. Gynecol. Obstet. 269, 192–195 (2004).

    Article  PubMed  Google Scholar 

  101. Podfigurna-Stopa, A. et al. Skeletal status and body composition in young women with functional hypothalamic amenorrhea. Gynecol. Endocrinol. 28, 299–304 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Drake, M. T., McCready, L. K., Hoey, K. A., Atkinson, E. J. & Khosla, S. Effects of suppression of follicle-stimulating hormone secretion on bone resorption markers in postmenopausal women. J. Clin. Endocrinol. Metab. 95, 5063–5068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Rendina, D. et al. FSHR gene polymorphisms influence bone mineral density and bone turnover in postmenopausal women. Eur. J. Endocrinol. 163, 165–172 (2010).

    Article  CAS  PubMed  Google Scholar 

  104. Mendoza, N. et al. Estrogen-related genes and postmenopausal osteoporosis risk. Climacteric 15, 587–593 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Randolph, J. F. Jr. et al. Reproductive hormones in the early menopausal transition: relationship to ethnicity, body size, and menopausal status. J. Clin. Endocrinol. Metab. 88, 1516–1522 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Sowers, M. R. et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN. Osteoporos. Int. 14, 191–197 (2003).

    Article  CAS  PubMed  Google Scholar 

  107. Sowers, M. R. et al. Hormone predictors of bone mineral density changes during the menopausal transition. J. Clin. Endocrinol. Metab. 91, 1261–1267 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Greendale, G. A. et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J. Bone Min. Res. 27, 111–118 (2012).

    Article  Google Scholar 

  109. Sowers, M. et al. Performance-based physical functioning in African-American and Caucasian women at midlife: considering body composition, quadriceps strength, and knee osteoarthritis. Am. J. Epidemiol. 163, 950–958 (2006).

    Article  PubMed  Google Scholar 

  110. Greendale, G. A. et al. Changes in body composition and weight during the menopause transition. JCI Insight 4, e124865 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Greendale, G. A. et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology 72, 1850–1857 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lukefahr, A. L. et al. Decreased bone mineral density in rats rendered follicle-deplete by an ovotoxic chemical correlates with changes in follicle-stimulating hormone and inhibin A. Calcif. Tissue Int. 90, 239–249 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Xu, Z. R. et al. Relationship of age-related concentrations of serum FSH and LH with bone mineral density, prevalence of osteoporosis in native Chinese women. Clin. Chim. Acta 400, 8–13 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Wu, X. Y. et al. Age-related changes in biochemical markers of bone turnover and gonadotropin levels and their relationship among Chinese adult women. Osteoporos. Int. 21, 275–285 (2010).

    Article  PubMed  Google Scholar 

  115. Cheung, E. et al. Bone loss during menopausal transition among southern Chinese women. Maturitas 69, 50–56 (2011).

    Article  PubMed  Google Scholar 

  116. Wang, B. et al. Correlation analysis for follicle-stimulating hormone and C-terminal cross-linked telopetides of type I collagen in menopausal transition women with osteoporosis. Int. J. Clin. Exp. Med. 8, 2417–2422 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Gallagher, C. M., Moonga, B. S. & Kovach, J. S. Cadmium, follicle-stimulating hormone, and effects on bone in women age 42–60 years, NHANES III. Environ. Res. 110, 105–111 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Adami, S. et al. Determinants of bone turnover markers in healthy premenopausal women. Calcif. Tissue Int. 82, 341–347 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Veldhuis-Vlug, A. G. et al. Serum FSH is associated with BMD, bone marrow adiposity, and body composition in the AGES-Reykjavik Study of older adults. J. Clin. Endocrinol. Metab. 106, e1156–e1169 (2021).

    Article  PubMed  Google Scholar 

  120. Crandall, C. J. et al. Serum sex steroid levels and longitudinal changes in bone density in relation to the final menstrual period. J. Clin. Endocrinol. Metab. 98, E654–E663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hofbauer, L. C. & Rauner, M. Minireview: live and let die: molecular effects of glucocorticoids on bone cells. Mol. Endocrinol. 23, 1525–1531 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Compston, J. Glucocorticoid-induced osteoporosis: an update. Endocrine 61, 7–16 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Minetto, M. et al. Bone loss is more severe in primary adrenal than in pituitary-dependent Cushing’s syndrome. Osteoporos. Int. 15, 855–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  124. Zhong, Q. et al. Multiple melanocortin receptors are expressed in bone cells. Bone 36, 820–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  125. Isales, C. M., Zaidi, M. & Blair, H. C. ACTH is a novel regulator of bone mass. Ann. N. Y. Acad. Sci. 1192, 110–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Sato, T. et al. Bone phenotype in melanocortin 2 receptor-deficient mice. Bone Rep. 13, 100713 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zaidi, M. et al. ACTH protects against glucocorticoid-induced osteonecrosis of bone. Proc. Natl Acad. Sci. USA 107, 8782–8787 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Tourkova, I. L. et al. Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D(3) enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. Lab. Invest. 97, 1072–1083 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sadeghi, F., Vahednia, E., Naderi Meshkin, H. & Kerachian, M. A. The effect of adrenocorticotropic hormone on alpha-2-macroglobulin in osteoblasts derived from human mesenchymal stem cells. J. Cell. Mol. Med. 24, 4784–4790 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Elabd, C. et al. Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cell 26, 2399–2407 (2008).

    Article  CAS  Google Scholar 

  131. Tamma, R. et al. Oxytocin is an anabolic bone hormone. Proc. Natl Acad. Sci. USA 106, 7149–7154 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Sun, L. et al. Functions of vasopressin and oxytocin in bone mass regulation. Proc. Natl Acad. Sci. USA 113, 164–169 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Tamma, R. et al. Regulation of bone remodeling by vasopressin explains the bone loss in hyponatremia. Proc. Natl Acad. Sci. USA 110, 18644–18649 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Athonvarangkul, D. & Wysolmerski, J. J. Crosstalk within a brain–breast–bone axis regulates mineral and skeletal metabolism during lactation. Front. Physiol. 14, 1121579 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Di Benedetto, A. et al. Osteoblast regulation via ligand-activated nuclear trafficking of the oxytocin receptor. Proc. Natl Acad. Sci. USA 111, 16502–16507 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sun, L. et al. Oxytocin regulates body composition. Proc. Natl Acad. Sci. USA 116, 26808–26815 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Liu, X. et al. Oxytocin deficiency impairs maternal skeletal remodeling. Biochem. Biophys. Res. Commun. 388, 161–166 (2009).

    Article  PubMed  Google Scholar 

  138. Yu, W. J. et al. Association between serum oxytocin, bone mineral density and body composition in Chinese adult females. Medicina 58, 1625 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Breuil, V. et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: analysis of the OPUS cohort. J. Clin. Endocrinol. Metab. 99, E634–E641 (2014).

    Article  CAS  PubMed  Google Scholar 

  140. Breuil, V. et al. Oxytocin and bone status in men: analysis of the MINOS cohort. Osteoporos. Int. 26, 2877–2882 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Sejling, A. S., Pedersen-Bjergaard, U. & Eiken, P. Syndrome of inappropriate ADH secretion and severe osteoporosis. J. Clin. Endocrinol. Metab. 97, 4306–4310 (2012).

    Article  CAS  PubMed  Google Scholar 

  142. Sejling, A. S., Thorsteinsson, A. L., Pedersen-Bjergaard, U. & Eiken, P. Recovery from SIADH-associated osteoporosis: a case report. J. Clin. Endocrinol. Metab. 99, 3527–3530 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Murthy, K. et al. The effects of hyponatremia on bone density and fractures: a systematic review and meta-analysis. Endocr. Pract. 25, 366–378 (2019).

    Article  PubMed  Google Scholar 

  144. Upala, S. & Sanguankeo, A. Association between hyponatremia, osteoporosis, and fracture: a systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 101, 1880–1886 (2016).

    Article  CAS  PubMed  Google Scholar 

  145. Kinsella, S., Moran, S., Sullivan, M. O., Molloy, M. G. & Eustace, J. A. Hyponatremia independent of osteoporosis is associated with fracture occurrence. Clin. J. Am. Soc. Nephrol. 5, 275–280 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Coss, D. et al. Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am. J. Physiol. Endocrinol. Metab. 279, E1216–E1225 (2000).

    Article  CAS  PubMed  Google Scholar 

  147. Seriwatanachai, D. et al. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor kappaB ligand/osteoprotegerin ratio. Bone 42, 535–546 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Clement-Lacroix, P. et al. Osteoblasts are a new target for prolactin: analysis of bone formation in prolactin receptor knockout mice. Endocrinology 140, 96–105 (1999).

    Article  CAS  PubMed  Google Scholar 

  149. Sowers, M. et al. Changes in body composition in women over six years at midlife: ovarian and chronological aging. J. Clin. Endocrinol. Metab. 92, 895–901 (2007).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, X. M. et al. FSH regulates fat accumulation and redistribution in aging through the Galphai/Ca(2+)/CREB pathway. Aging Cell 14, 409–420 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Han, X. et al. FSH promotes fat accumulation by activating PPARgamma signaling in surgically castrated, but not immunocastrated, male pigs. Theriogenology 160, 10–17 (2021).

    Article  CAS  PubMed  Google Scholar 

  152. Han, X. et al. A novel follicle-stimulating hormone vaccine for controlling fat accumulation. Theriogenology 148, 103–111 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Abildgaard, J. et al. Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Sci. Rep. 11, 14750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Araujo, A. B. & Wittert, G. A. Endocrinology of the aging male. Best. Pract. Res. Clin. Endocrinol. Metab. 25, 303–319 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ostergren, P. B. et al. Metabolic consequences of gonadotropin-releasing hormone agonists vs orchiectomy: a randomized clinical study. BJU Int. 123, 602–611 (2019).

    Article  CAS  PubMed  Google Scholar 

  156. Lundback, V., Kulyte, A., Dahlman, I. & Marcus, C. Adipose-specific inactivation of thyroid stimulating hormone receptors in mice modifies body weight, temperature and gene expression in adipocytes. Physiol. Rep. 8, e14538 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Draman, M. S. et al. The role of thyrotropin receptor activation in adipogenesis and modulation of fat phenotype. Front. Endocrinol. 8, 83 (2017).

    Article  Google Scholar 

  158. Lu, M. & Lin, R. Y. TSH stimulates adipogenesis in mouse embryonic stem cells. J. Endocrinol. 196, 159–169 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Endo, T. & Kobayashi, T. Expression of functional TSH receptor in white adipose tissues of hyt/hyt mice induces lipolysis in vivo. Am. J. Physiol. Endocrinol. Metab. 302, E1569–E1575 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Kumar, S., Coenen, M. J., Scherer, P. E. & Bahn, R. S. Evidence for enhanced adipogenesis in the orbits of patients with Graves’ ophthalmopathy. J. Clin. Endocrinol. Metab. 89, 930–935 (2004).

    Article  CAS  PubMed  Google Scholar 

  161. Haraguchi, K., Shimura, H., Lin, L., Endo, T. & Onaya, T. Differentiation of rat preadipocytes is accompanied by expression of thyrotropin receptors. Endocrinology 137, 3200–3205 (1996).

    Article  CAS  PubMed  Google Scholar 

  162. Lu, S. et al. Role of extrathyroidal TSHR expression in adipocyte differentiation and its association with obesity. Lipids Health Dis. 11, 17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Haraguchi, K. et al. Effects of thyrotropin on the proliferation and differentiation of cultured rat preadipocytes. Thyroid 9, 613–619 (1999).

    Article  CAS  PubMed  Google Scholar 

  164. Haluzik, M. et al. Effects of hypo- and hyperthyroidism on noradrenergic activity and glycerol concentrations in human subcutaneous abdominal adipose tissue assessed with microdialysis. J. Clin. Endocrinol. Metab. 88, 5605–5608 (2003).

    Article  CAS  PubMed  Google Scholar 

  165. Fox, C. S. et al. Relations of thyroid function to body weight: cross-sectional and longitudinal observations in a community-based sample. Arch. Intern. Med. 168, 587–592 (2008).

    Article  PubMed  Google Scholar 

  166. Ittermann, T. et al. Low serum TSH levels are associated with low values of fat-free mass and body cell mass in the elderly. Sci. Rep. 11, 10547 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Dvorakova, M. et al. Relationship between pituitary–thyroid axis hormones and anthropometric parameters in Czech adult population. Physiol. Res. 57, S127–S134 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Nyrnes, A., Jorde, R. & Sundsfjord, J. Serum TSH is positively associated with BMI. Int. J. Obes. 30, 100–105 (2006).

    Article  CAS  Google Scholar 

  169. Ruhla, S. et al. A high normal TSH is associated with the metabolic syndrome. Clin. Endocrinol. 72, 696–701 (2010).

    Article  CAS  Google Scholar 

  170. Sakurai, M. et al. Association between a serum thyroid-stimulating hormone concentration within the normal range and indices of obesity in Japanese men and women. Intern. Med. 53, 669–674 (2014).

    Article  PubMed  Google Scholar 

  171. Zhang, J. et al. TSH promotes adiposity by inhibiting the browning of white fat. Adipocyte 9, 264–278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Jiang, D. et al. Thyroid-stimulating hormone inhibits adipose triglyceride lipase in 3T3-L1 adipocytes through the PKA pathway. PLoS ONE 10, e0116439 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Janson, A. et al. Effects of stimulatory and inhibitory thyrotropin receptor antibodies on lipolysis in infant adipocytes. J. Clin. Endocrinol. Metab. 80, 1712–1716 (1995).

    CAS  PubMed  Google Scholar 

  174. Endo, T. & Kobayashi, T. Thyroid-stimulating hormone receptor in brown adipose tissue is involved in the regulation of thermogenesis. Am. J. Physiol. Endocrinol. Metab. 295, E514–E518 (2008).

    Article  CAS  PubMed  Google Scholar 

  175. Zhang, L. et al. Biological effects of thyrotropin receptor activation on human orbital preadipocytes. Invest. Ophthalmol. Vis. Sci. 47, 5197–5203 (2006).

    Article  PubMed  Google Scholar 

  176. Comas, F. et al. Adipose tissue TSH as a new modulator of human adipocyte mitochondrial function. Int. J. Obes. 43, 1611–1619 (2019).

    Article  CAS  Google Scholar 

  177. Elgadi, A., Zemack, H., Marcus, C. & Norgren, S. Tissue-specific knockout of TSHr in white adipose tissue increases adipocyte size and decreases TSH-induced lipolysis. Biochem. Biophys. Res. Commun. 393, 526–530 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Moreno-Navarrete, J. M. et al. TSHB mRNA is linked to cholesterol metabolism in adipose tissue. FASEB J. 31, 4482–4491 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Blevins, J. E., Schwartz, M. W. & Baskin, D. G. Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R87–R96 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Son, S. et al. Whole-brain wiring diagram of oxytocin system in adult mice. J. Neurosci. 42, 5021–5033 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Maejima, Y. et al. Oxytocinergic circuit from paraventricular and supraoptic nuclei to arcuate POMC neurons in hypothalamus. FEBS Lett. 588, 4404–4412 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Olson, B. R. et al. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides 12, 113–118 (1991).

    Article  CAS  PubMed  Google Scholar 

  183. Arletti, R., Benelli, A. & Bertolini, A. Oxytocin inhibits food and fluid intake in rats. Physiol. Behav. 48, 825–830 (1990).

    Article  CAS  PubMed  Google Scholar 

  184. Smith, A. S., Korgan, A. C. & Young, W. S. Oxytocin delivered nasally or intraperitoneally reaches the brain and plasma of normal and oxytocin knockout mice. Pharmacol. Res. 146, 104324 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Maejima, Y. et al. Peripheral oxytocin treatment ameliorates obesity by reducing food intake and visceral fat mass. Aging 3, 1169–1177 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Klockars, A., Brunton, C., Li, L., Levine, A. S. & Olszewski, P. K. Intravenous administration of oxytocin in rats acutely decreases deprivation-induced chow intake, but it fails to affect consumption of palatable solutions. Peptides 93, 13–19 (2017).

    Article  CAS  PubMed  Google Scholar 

  187. Wronski, M. L. et al. A randomized, double-blind, placebo-controlled clinical trial of 8-week intranasal oxytocin administration in adults with obesity: rationale, study design, and methods. Contemp. Clin. Trials 122, 106909 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Wu, Z. et al. An obligate role of oxytocin neurons in diet induced energy expenditure. PLoS ONE 7, e45167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Deblon, N. et al. Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. PLoS ONE 6, e25565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Yi, K. J. et al. The regulation of oxytocin receptor gene expression during adipogenesis. J. Neuroendocrinol. 27, 335–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  191. Blevins, J. E. et al. Chronic oxytocin administration inhibits food intake, increases energy expenditure, and produces weight loss in fructose-fed obese rhesus monkeys. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R431–R438 (2015).

    Article  CAS  PubMed  Google Scholar 

  192. Yuan, J., Zhang, R., Wu, R., Gu, Y. & Lu, Y. The effects of oxytocin to rectify metabolic dysfunction in obese mice are associated with increased thermogenesis. Mol. Cell Endocrinol. 514, 110903 (2020).

    Article  CAS  PubMed  Google Scholar 

  193. Noble, E. E., Billington, C. J., Kotz, C. M. & Wang, C. Oxytocin in the ventromedial hypothalamic nucleus reduces feeding and acutely increases energy expenditure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R737–R745 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Kasahara, Y. et al. Oxytocin receptor in the hypothalamus is sufficient to rescue normal thermoregulatory function in male oxytocin receptor knockout mice. Endocrinology 154, 4305–4315 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Xi, D. et al. Ablation of oxytocin neurons causes a deficit in cold stress response. J. Endocr. Soc. 1, 1041–1055 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Qian, W. et al. Decreased circulating levels of oxytocin in obesity and newly diagnosed type 2 diabetic patients. J. Clin. Endocrinol. Metab. 99, 4683–4689 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Froemke, R. C. & Young, L. J. Oxytocin, neural plasticity, and social behavior. Annu. Rev. Neurosci. 44, 359–381 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Stevens, F. L., Weisman, O., Feldman, R., Hurley, R. A. & Taber, K. H. Oxytocin and behavior: evidence for effects in the brain. J. Neuropsychiatry Clin. Neurosci. 25, 96–102 (2013).

    Article  PubMed  Google Scholar 

  199. Gainer, H. Cell-type specific expression of oxytocin and vasopressin genes: an experimental odyssey. J. Neuroendocrinol. 24, 528–538 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Eliava, M. et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron 89, 1291–1304 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ishunina, T. A. & Swaab, D. F. Vasopressin and oxytocin neurons of the human supraoptic and paraventricular nucleus: size changes in relation to age and sex. J. Clin. Endocrinol. Metab. 84, 4637–4644 (1999).

    Article  CAS  PubMed  Google Scholar 

  202. Yoshikawa, T. et al. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus. Eur. J. Neurosci. 42, 2678–2689 (2015).

    Article  PubMed  Google Scholar 

  203. Jenkins, J. S., Ang, V. T., Hawthorn, J., Rossor, M. N. & Iversen, L. L. Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Res. 291, 111–117 (1984).

    Article  CAS  PubMed  Google Scholar 

  204. Mens, W. B., Witter, A. & Van Wimersma Greidanus, T. B. Penetration of neurohypophyseal hormones from plasma into cerebrospinal fluid (CSF): half-times of disappearance of these neuropeptides from CSF. Brain Res. 262, 143–149 (1983).

    Article  CAS  PubMed  Google Scholar 

  205. Pow, D. V. & Morris, J. F. Dendrites of hypothalamic magnocellular neurons release neurohypophyseal peptides by exocytosis. Neuroscience 32, 435–439 (1989).

    Article  CAS  PubMed  Google Scholar 

  206. Hirasawa, M. et al. Dendritically released transmitters cooperate via autocrine and retrograde actions to inhibit afferent excitation in rat brain. J. Physiol. 559, 611–624 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Brussaard, A. B., Kits, K. S. & de Vlieger, T. A. Postsynaptic mechanism of depression of GABAergic synapses by oxytocin in the supraoptic nucleus of immature rat. J. Physiol. 497, 495–507 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Carter, C. S. Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 65, 17–39 (2014).

    Article  PubMed  Google Scholar 

  209. Carter, C. S. et al. Is oxytocin ‘Nature’s Medicine’? Pharmacol. Rev. 72, 829–861 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Cochran, D. M., Fallon, D., Hill, M. & Frazier, J. A. The role of oxytocin in psychiatric disorders: a review of biological and therapeutic research findings. Harv. Rev. Psychiatry 21, 219–247 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Ryu, V. et al. Brain atlas for glycoprotein hormone receptors at single-transcript level. eLife 11, e79612 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Fonseca, T. L. et al. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J. Clin. Invest. 123, 1492–1500 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sáenz de Miera, C., Sage-Ciocca, D., Simonneaux, V., Pévet, P. & Monecke, S. Melatonin-independent photoperiodic entrainment of the circannual TSH rhythm in the pars tuberalis of the European Hamster. J. Biol. Rhythm. 33, 302–317 (2018).

    Article  Google Scholar 

  214. Hanon, E. A. et al. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr. Biol. 18, 1147–1152 (2008).

    Article  CAS  PubMed  Google Scholar 

  215. Barrett, P. & Bolborea, M. Molecular pathways involved in seasonal body weight and reproductive responses governed by melatonin. J. Pineal Res. 52, 376–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  216. Ikegami, K. et al. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 9, 801–810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Prevot, V. et al. The versatile tanycyte: a hypothalamic integrator of reproduction and energy metabolism. Endocr. Rev. 39, 333–368 (2018).

    Article  PubMed  Google Scholar 

  218. Yang, R. et al. Association of subclinical hypothyroidism with anxiety symptom in young first-episode and drug-naive patients with major depressive disorder. Front. Psychiatry 13, 920723 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Dayan, C. M. & Panicker, V. Hypothyroidism and depression. Eur. Thyroid J. 2, 168–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Luan, S. et al. Thyrotropin receptor signaling deficiency impairs spatial learning and memory in mice. J. Endocrinol. 246, 41–55 (2020).

    Article  CAS  PubMed  Google Scholar 

  221. Burgos, J. R., Iresjo, B. M., Warnaker, S. & Smedh, U. Presence of TSH receptors in discrete areas of the hypothalamus and caudal brainstem with relevance for feeding controls — support for functional significance. Brain Res. 1642, 278–286 (2016).

    Article  CAS  PubMed  Google Scholar 

  222. Bi, W. K. et al. FSH signaling is involved in affective disorders. Biochem. Biophys. Res. Commun. 525, 915–920 (2020).

    Article  CAS  PubMed  Google Scholar 

  223. Blair, J. A., Bhatta, S. & Casadesus, G. CNS luteinizing hormone receptor activation rescues ovariectomy-related loss of spatial memory and neuronal plasticity. Neurobiol. Aging 78, 111–120 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Gale, S. D., Baxter, L. & Thompson, J. Greater memory impairment in dementing females than males relative to sex-matched healthy controls. J. Clin. Exp. Neuropsychol. 38, 527–533 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Chêne, G. et al. Gender and incidence of dementia in the Framingham Heart Study from mid-adult life. Alzheimers Dement. 11, 310–320 (2015).

    Article  PubMed  Google Scholar 

  226. Lin, K. A. et al. Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimers Dement. 1, 103–110 (2015).

    Article  Google Scholar 

  227. Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).

    Article  CAS  PubMed  Google Scholar 

  228. Espeland, M. A. et al. Conjugated equine estrogens and global cognitive function in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2959–2968 (2004).

    Article  CAS  PubMed  Google Scholar 

  229. Zandi, P. P. et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288, 2123–2129 (2002).

    Article  CAS  PubMed  Google Scholar 

  230. Greendale, G. A. et al. Menopause-associated symptoms and cognitive performance: results from the study of women’s health across the nation. Am. J. Epidemiol. 171, 1214–1224 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Bowen, R. L., Isley, J. P. & Atkinson, R. L. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J. Neuroendocrinol. 12, 351–354 (2000).

    Article  CAS  PubMed  Google Scholar 

  232. Short, R. A., Bowen, R. L., O’Brien, P. C. & Graff-Radford, N. R. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin. Proc. 76, 906–909 (2001).

    Article  CAS  PubMed  Google Scholar 

  233. Corbo, R. M., Gambina, G., Broggio, E. & Scacchi, R. Influence of variation in the follicle-stimulating hormone receptor gene (FSHR) and age at menopause on the development of Alzheimer’s disease in women. Dement. Geriatr. Cogn. Disord. 32, 63–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  234. Espinoza, S. E. et al. Intranasal oxytocin improves lean muscle mass and lowers LDL cholesterol in older adults with sarcopenic obesity: a pilot randomized controlled trial. J. Am. Med. Dir. Assoc. 22, 1877–1882 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Zhu, L. L. et al. Blocking FSH action attenuates osteoclastogenesis. Biochem. Biophys. Res. Commun. 422, 54–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Rojekar, S. et al. Development and biophysical characterization of a humanized FSH-blocking monoclonal antibody therapeutic formulated at an ultra-high concentration. eLife 12, e88898 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sant, D., Rokekar, S. & Gera, S. Optimizing therapeutic humanized FSH-blocking antibody formulation using protein thermal shift assay. Ann. N. Y. Acad. Sci. 1521, 67–78 (2023).

    Article  CAS  PubMed  Google Scholar 

  238. Geng, W. et al. Immunization with FSHbeta fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model. Biochem. Biophys. Res. Commun. 434, 280–286 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Work at Icahn School of Medicine at Mount Sinai carried out at the Center for Translational Medicine and Pharmacology was supported by R01 AG071870 to M.Z., T.Y. and S.-M.K.; R01 AG074092 and U01 AG073148 to T.Y. and M.Z.; and U19 AG060917 and R01 DK113627 to M.Z. M.Z. also thanks the Harrington Discovery Institute for the Innovator-Scholar Award towards the development of anti-FSH antibody. The authors are grateful to V. Ryu (Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA) for his insights on the central actions of pituitary hormones.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mone Zaidi.

Ethics declarations

Competing interests

M.Z. is an inventor on issued patents on inhibiting FSH for the prevention and treatment of osteoporosis and obesity (US Patents 8,435,948 and 11,034,761). M.Z. is also an inventor on a patent application on the composition and use of humanized monoclonal anti-FSH antibodies and is a co-inventor of a pending patent on the use of FSH as a target for preventing Alzheimer disease. M.Z. and T.Y. are co-inventors on a pending patent application relating to the effect of luteinizing hormone on body composition and another patent relating to the ultra-high formulation of an FSH-blocking antibody. These patents are owned by Icahn School of Medicine at Mount Sinai (ISMMS), and the inventors and co-inventors would be recipients of royalties, per institutional policy. M.Z. also consults for Rani Pharmaceuticals, and several financial platforms, including Gerson Lehman Group and Guidepoint, on drugs for osteoporosis and genetic bone diseases. S.-M.K. declares no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaidi, M., Yuen, T. & Kim, SM. Pituitary crosstalk with bone, adipose tissue and brain. Nat Rev Endocrinol 19, 708–721 (2023). https://doi.org/10.1038/s41574-023-00894-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00894-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing