Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ontogenetic rules for the molecular diversification of hypothalamic neurons

Abstract

The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regionalization of the hypothalamus and its transcription factor determinants.
Fig. 2: Models of hypothalamic neurogenesis and the role of gene regulatory networks in neuronal specification.
Fig. 3: The leptin-dependent formation of axonal projections.

Similar content being viewed by others

References

  1. Kreier, F. & Swaab, D. F. in History of Neurology vol. 95, 335–360 (Elsevier, 2009).

  2. Pickford, M. Neural control of the pituitary gland. By G.W. Harris, F.R.S., Sc.D., M.D., Fitzmary Professor of Physiology, Institute of Psychiatry, Maudsley Hospital. Edward Arnold (publishers) Ltd. 1955. pp. 298. 30s. Q. J. Exp. Physiol. Cogn. Med. Sci. 41, 355–356 (1956).

    Google Scholar 

  3. Woolley, D. W., Merrifield, R. B., Ressler, C. & Du Vigneaud, V. Strepogenin activity of synthetic peptides related to oxytocin. Proc. Soc. Exp. Biol. Med. 89, 669–673 (1955).

    Article  CAS  PubMed  Google Scholar 

  4. Acher, R., Chauvet, J & Olivry, G. Sur l’existence éventuelle d’une hormone unique neurohypophysaire I. Relations entre l’ocytocine, la vasopressine et la protéine de van dyke extraites de la neurohypophyse du boeuf. Biochim. Biophys. Acta 22, 421–427 (1956).

    Article  CAS  PubMed  Google Scholar 

  5. Klavdieva, M. M. The history of neuropeptides II. Front. Neuroendocrinol. 17, 126–153 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Guillemin, R. Peptides in the brain: the new endocrinology of the neuron. Science 202, 390–402 (1978).

    Article  CAS  PubMed  Google Scholar 

  7. Swaab, D. F., Pool, C. W. & Nijveldt, F. Immunofluorescence of vasopressin and oxytocin in the rat hypothalamo-neurohypophypopseal system. J. Neural Transm. 36, 195–215 (1975).

    Article  CAS  PubMed  Google Scholar 

  8. Swanson, L. W., Sawchenko, P. E. & Lind, R. W. Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response. Prog. Brain Res. 68, 169–190 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Hökfelt, T. et al. In Integrative Neuroendocrinology: Molecular, Cellular and Clinical Aspects: 1st International Congress of Neuroendocrinology, San Francisco, CA, July 1986 (eds McCann, S. M. & Weiner, R. I.) 1–34 (S. Karger AG, 1987).

  10. Pinto, S. et al. Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science 304, 110–115 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Horvath, T. L. & Diano, S. The floating blueprint of hypothalamic feeding circuits. Nat. Rev. Neurosci. 5, 662–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, D. et al. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470, 221–226 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lechan, R. M. & Toni, R. in Endotext (eds Feingold, K. R. et al.) (MDText.com, 2000).

  14. Schröder, H., Moser, N. & Huggenberger, S. in Neuroanatomy of the Mouse: An Introduction 205–230 (Springer, 2020).

  15. Xie, Y. & Dorsky, R. I. Development of the hypothalamus: conservation, modification and innovation. Development 144, 1588–1599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Tasic, B. et al. Shared and distinct transcriptomic cell types across neocortical areas. Nature 563, 72–78 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun, Y.-C. et al. Integrating barcoded neuroanatomy with spatial transcriptional profiling enables identification of gene correlates of projections. Nat. Neurosci. 24, 873–885 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Romanov, R. A. et al. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20, 176–188 (2017). This was one of the first studies to map neuronal identities at single-cell resolution in the adult hypothalamus.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals hypothalamic cell diversity. Cell Rep. 18, 3227–3241 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Campbell, J. N. et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20, 484–496 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mickelsen, L. E. et al. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat. Neurosci. 22, 642–656 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wen, S. et al. Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nat. Neurosci. 23, 456–467 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kim, D.-W. et al. Multimodal analysis of cell types in a hypothalamic node controlling social behavior. Cell 179, 713–728.e17 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018). This study used single-cell spatial transcriptomics (MERFISH) to map specific cell types in the adult preoptic hypothalamus.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mickelsen, L. E. et al. Cellular taxonomy and spatial organization of the murine ventral posterior hypothalamus. Elife 9, e58901 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang, Y. et al. EASI-FISH for thick tissue defines lateral hypothalamus spatio-molecular organization. Cell 184, 6361–6377.e24 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, S. et al. Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. Science 370, eabb2494 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Maggi, R., Zasso, J. & Conti, L. Neurodevelopmental origin and adult neurogenesis of the neuroendocrine hypothalamus. Front. Cell. Neurosci. 8, 440 (2014).

    PubMed  Google Scholar 

  31. Miranda-Angulo, A. L., Byerly, M. S., Mesa, J., Wang, H. & Blackshaw, S. Rax regulates hypothalamic tanycyte differentiation and barrier function in mice. J. Comp. Neurol. 522, 876–899 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rosin, J. M. & Kurrasch, D. M. in Glial-Neuronal Signaling in Neuroendocrine Systems (eds. Tasker, J. G., Bains, J. S. & Chowen, J. A.) 11, 3–28 (Springer International Publishing, 2021).

  33. Thion, M. S., Ginhoux, F. & Garel, S. Microglia and early brain development: an intimate journey. Science 362, 185–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Puelles, L. in Encyclopedia of Neuroscience 315–319 (Elsevier, 2009).

  35. Puelles, L. & Rubenstein, J. L. R. A new scenario of hypothalamic organization: rationale of new hypotheses introduced in the updated prosomeric model. Front. Neuroanat. 9, 27 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Puelles, L. Survey of midbrain, diencephalon, and hypothalamus neuroanatomic terms whose prosomeric definition conflicts with columnar tradition. Front. Neuroanat. 13, 20 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ferran, J. L., Puelles, L. & Rubenstein, J. L. R. Molecular codes defining rostrocaudal domains in the embryonic mouse hypothalamus. Front. Neuroanat. 9, 46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shimogori, T. et al. A genomic atlas of mouse hypothalamic development. Nat. Neurosci. 13, 767–775 (2010). This study generated the first ontogenetic map of area-specific gene selectors in the developing mouse hypothalamus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Swanson, L. W. Brain Architecture: Understanding the Basic Plan (Oxford Univ. Press, 2011).

  40. Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020). This study provided a high-resolution single-cell molecular atlas of the developing mouse hypothalamus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020). This study defines key molecular rules that underlie the temporal and spatial establishment of the mouse hypothalamus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kano, M., Suga, H. & Arima, H. Induction of functional hypothalamus and pituitary tissues from pluripotent stem cells for regenerative medicine. J. Endocr. Soc. 5, bvaa188 (2021).

    Article  PubMed  Google Scholar 

  43. Kim, D. W. et al. Single-cell analysis of early chick hypothalamic development reveals that hypothalamic cells are induced from prethalamic-like progenitors. Cell Rep. 38, 110251 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lee, B., Lee, S., Lee, S.-K. & Lee, J. W. The LIM-homeobox transcription factor Isl1 plays crucial roles in the development of multiple arcuate nucleus neurons. Development 143, 3763–3773 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yun Liu, K., May Chow, J. & Sherry, C. Early life obesity and diabetes: origins in pregnancy. Open. J. Endocr. Metab. Dis. 3, 28012 (2013).

    Google Scholar 

  46. He, J. et al. How variable clones build an invariant retina. Neuron 75, 786–798 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kohwi, M. & Doe, C. Q. Temporal fate specification and neural progenitor competence during development. Nat. Rev. Neurosci. 14, 823–838 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gomes, F. L. A. F. et al. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development 138, 227–235 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Z., Li, X. & Desplan, C. Deterministic or stochastic choices in retinal neuron specification. Neuron 75, 739–742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang, Y.-H. et al. Cascade diversification directs generation of neuronal diversity in the hypothalamus. Cell Stem Cell 28, 1483–1499 (2021). Fate diversification of neurons was reported to follow a stepwise cascade diversification model in the hypothalamus.

    Article  CAS  PubMed  Google Scholar 

  51. Zhou, X. et al. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat. Commun. 11, 4063 (2020). This study describes phylogenetic conservation of the cellular and molecular properties of neural progenitors in mouse and human.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hansen, D. V., Lui, J. H., Parker, P. R. L. & Kriegstein, A. R. Neurogenic radial glia in the outer subventricular zone of human neocortex. Nature 464, 554–561 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S. & Kriegstein, A. R. Neurons derived from radial glial cells establish radial units in neocortex. Nature 409, 714–720 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Arnold-Aldea, S. A. & Cepko, C. L. Dispersion patterns of clonally related cells during development of the hypothalamus. Dev. Biol. 173, 148–161 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Aydin, B. et al. Proneural factors Ascl1 and Neurog2 contribute to neuronal subtype identities by establishing distinct chromatin landscapes. Nat. Neurosci. 22, 897–908 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lu, F. et al. Rax is a selector gene for mediobasal hypothalamic cell types. J. Neurosci. 33, 259–272 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pak, T., Yoo, S., Miranda-Angulo, A. L., Wang, H. & Blackshaw, S. Rax-CreERT2 knock-in mice: a tool for selective and conditional gene deletion in progenitor cells and radial glia of the retina and hypothalamus. PLoS One 9, e90381 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Orquera, D. P., Nasif, S., Low, M. J., Rubinstein, M. & de Souza, F. S. J. Essential function of the transcription factor Rax in the early patterning of the mammalian hypothalamus. Dev. Biol. 416, 212–224 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dale, J. K. et al. Cooperation of BMP7 and SHH in the induction of forebrain ventral midline cells by prechordal mesoderm. Cell 90, 257–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  60. Wittmann, S. G., Low, M. J. & Lechan, R. M. Adult-born proopiomelanocortin neurons derived from Rax-expressing precursors mitigate the metabolic effects of congenital hypothalamic proopiomelanocortin deficiency. Mol. Metab. 53, 101312 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Acampora, D. et al. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes Dev. 13, 2787–2800 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nasif, S. et al. Islet 1 specifies the identity of hypothalamic melanocortin neurons and is critical for normal food intake and adiposity in adulthood. Proc. Natl Acad. Sci. USA 112, E1861–E1870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Alvarez-Bolado, G. Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res. 375, 23–39 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Padilla, S. L., Carmody, J. S. & Zeltser, L. M. Pomc-expressing progenitors give rise to antagonistic neuronal populations in hypothalamic feeding circuits. Nat. Med. 16, 403–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. MacKay, H. & Abizaid, A. Embryonic development of the hypothalamic feeding circuitry: transcriptional, nutritional, and hormonal influences. Mol. Metab. 3, 813–822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huisman, C. et al. The histone H3-lysine 4-methyltransferase Mll4 regulates the development of growth hormone-releasing hormone-producing neurons in the mouse hypothalamus. Nat. Commun. 12, 256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee, B. et al. Dlx1/2 and Otp coordinate the production of hypothalamic GHRH- and AgRP-neurons. Nat. Commun. 9, 2026 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yu, H., Rubinstein, M. & Low, M. J. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. Elife 11, e72883 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huisman, C. et al. Single cell transcriptome analysis of developing arcuate nucleus neurons uncovers their key developmental regulators. Nat. Commun. 10, 3696 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Orquera, D. P. et al. The homeodomain transcription factor NKX2.1 is essential for the early specification of melanocortin neuron identity and activates pomc expression in the developing hypothalamus. J. Neurosci. 39, 4023–4035 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Quarta, C. et al. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat. Metab. 1, 222–235 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hael, C. E., Rojo, D., Orquera, D. P., Low, M. J. & Rubinstein, M. The transcriptional regulator PRDM12 is critical for Pomc expression in the mouse hypothalamus and controlling food intake, adiposity, and body weight. Mol. Metab. 34, 43–53 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ma, T., Wong, S. Z. H., Lee, B., Ming, G.-L. & Song, H. Decoding neuronal composition and ontogeny of individual hypothalamic nuclei. Neuron 109, 1150–1167.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pelling, M. et al. Differential requirements for neurogenin 3 in the development of POMC and NPY neurons in the hypothalamus. Dev. Biol. 349, 406–416 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Romanov, R. A., Alpár, A., Hökfelt, T. & Harkany, T. Molecular diversity of corticotropin-releasing hormone mRNA-containing neurons in the hypothalamus. J. Endocrinol. 232, R161–R172 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Saucisse, N. et al. Functional heterogeneity of POMC neurons relies on mTORC1 signaling. Cell Rep. 37, 109800 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Biglari, N. et al. Functionally distinct POMC-expressing neuron subpopulations in hypothalamus revealed by intersectional targeting. Nat. Neurosci. 24, 913–929 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sokolowski, K. et al. Specification of select hypothalamic circuits and innate behaviors by the embryonic patterning gene dbx1. Neuron 86, 403–416 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hippenmeyer, S., Johnson, R. L. & Luo, L. Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep. 3, 960–967 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D. & Luo, L. Mosaic analysis with double markers in mice. Cell 121, 479–492 (2005).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, W. & Lufkin, T. The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev. Biol. 227, 432–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Schonemann, M. D. et al. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn-2. Genes Dev. 9, 3122–3135 (1995).

    Article  CAS  PubMed  Google Scholar 

  83. Rakic, P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 92, 11323–11327 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Moffat, J. J., Ka, M., Jung, E.-M. & Kim, W.-Y. Genes and brain malformations associated with abnormal neuron positioning. Mol. Brain 8, 72 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Marín, O. & Müller, U. Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Curr. Opin. Neurobiol. 26, 132–141 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Zhao, T. et al. Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus. Eur. J. Neurosci. 28, 1941–1955 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shimada, M. & Nakamura, T. Time of neuron origin in mouse hypothalamic nuclei. Exp. Neurol. 41, 163–173 (1973).

    Article  CAS  PubMed  Google Scholar 

  88. Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J. Comp. Neurol. 182, 945–971 (1978).

    Article  CAS  PubMed  Google Scholar 

  89. Altman, J. & Bayer, S. A. Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J. Comp. Neurol. 182, 973–993 (1978).

    Article  CAS  PubMed  Google Scholar 

  90. Murcia-Ramón, R. et al. Neuronal tangential migration from Nkx2.1-positive hypothalamus. Brain Struct. Funct. 225, 2857–2869 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kim, D. W. et al. Gene regulatory networks controlling differentiation, survival, and diversification of hypothalamic Lhx6-expressing GABAergic neurons. Commun. Biol. 4, 95 (2021). This study revealed a mechanism of molecular divergence under the control of Lhx6 and its effects on the development of GABAergic neurons in the hypothalamus.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwanzel-Fukuda, M. & Pfaff, D. W. Origin of luteinizing hormone-releasing hormone neurons. Nature 338, 161–164 (1989).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, T. Molecular logic of hypothalamus development. J. Endocr. Soc. 5, A507–A507 (2021).

    Article  PubMed Central  Google Scholar 

  94. Vogt, D. et al. Lhx6 directly regulates Arx and CXCR7 to determine cortical interneuron fate and laminar position. Neuron 82, 350–364 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hanics, J. et al. Secretagogin-dependent matrix metalloprotease-2 release from neurons regulates neuroblast migration. Proc. Natl Acad. Sci. USA 114, E2006–E2015 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kimura, Y., Matsunami, H. & Takeichi, M. Expression of cadherin-11 delineates boundaries, neuromeres, and nuclei in the developing mouse brain. Dev. Dyn. 206, 455–462 (1996).

    Article  CAS  PubMed  Google Scholar 

  97. Asahina, H., Masuba, A., Hirano, S. & Yuri, K. Distribution of protocadherin 9 protein in the developing mouse nervous system. Neuroscience 225, 88–104 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Dellovade, T. L. et al. GABA influences the development of the ventromedial nucleus of the hypothalamus. J. Neurobiol. 49, 264–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Davis, A. M., Henion, T. R. & Tobet, S. A. Gamma-aminobutyric acidB receptors and the development of the ventromedial nucleus of the hypothalamus. J. Comp. Neurol. 449, 270–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Gonda, Y., Namba, T. & Hanashima, C. Beyond axon guidance: roles of Slit-Robo signaling in neocortical formation. Front. Cell Dev. Biol. 8, 607415 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Borrell, V. et al. Slit/Robo signaling modulates the proliferation of central nervous system progenitors. Neuron 76, 338–352 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Thompson, H., Andrews, W., Parnavelas, J. G. & Erskine, L. Robo2 is required for Slit-mediated intraretinal axon guidance. Dev. Biol. 335, 418–426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Keimpema, E. et al. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain. Cereb. Cortex 24, 3277–3288 (2014).

    Article  PubMed  Google Scholar 

  105. Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. & Schultzberg, M. Peptidergic neurones. Nature 284, 515–521 (1980).

    Article  PubMed  Google Scholar 

  106. Everitt, B. J. & Hökfelt, T. Neuroendocrine anatomy of the hypothalamus. Acta Neurochir. Suppl. 47, 1–15 (1990).

    CAS  PubMed  Google Scholar 

  107. Hökfelt, T. & Tatemoto, K. Galanin–25 years with a multitalented neuropeptide. Cell Mol. Life Sci. 65, 1793–1795 (2008).

    Article  PubMed  Google Scholar 

  108. Bouret, S. G., Draper, S. J. & Simerly, R. B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 24, 2797–2805 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Allaway, K. C. & Machold, R. Developmental specification of forebrain cholinergic neurons. Dev. Biol. 421, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Ahmed, N. Y., Knowles, R. & Dehorter, N. New insights into cholinergic neuron diversity. Front. Mol. Neurosci. 12, 204 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cho, H.-H. et al. Isl1 directly controls a cholinergic neuronal identity in the developing forebrain and spinal cord by forming cell type-specific complexes. PLoS Genet. 10, e1004280 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Zhao, Y. et al. The LIM-homeobox gene Lhx8 is required for the development of many cholinergic neurons in the mouse forebrain. Proc. Natl Acad. Sci. USA 100, 9005–9010 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Quaresma, P. G. F. et al. Cholinergic neurons in the hypothalamus and dorsal motor nucleus of the vagus are directly responsive to growth hormone. Life Sci. 259, 118229 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Nasirova, N. et al. Dual recombinase fate mapping reveals a transient cholinergic phenotype in multiple populations of developing glutamatergic neurons. J. Comp. Neurol. 528, 283–307 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Jeong, J. H., Woo, Y. J., Chua, S. & Jo, Y.-H. Single-cell gene expression analysis of cholinergic neurons in the arcuate nucleus of the hypothalamus. PLoS One 11, e0162839 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Jeong, J. H., Lee, D. K. & Jo, Y.-H. Cholinergic neurons in the dorsomedial hypothalamus regulate food intake. Mol. Metab. 6, 306–312 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boulland, J.-L. et al. Expression of the vesicular glutamate transporters during development indicates the widespread corelease of multiple neurotransmitters. J. Comp. Neurol. 480, 264–280 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Cholanian, M., Powell, G. L., Levine, R. B. & Fregosi, R. F. Influence of developmental nicotine exposure on glutamatergic neurotransmission in rhythmically active hypoglossal motoneurons. Exp. Neurol. 287, 254–260 (2017).

    Article  CAS  PubMed  Google Scholar 

  119. Dwyer, J. B., McQuown, S. C. & Leslie, F. M. The dynamic effects of nicotine on the developing brain. Pharmacol. Ther. 122, 125–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hanse, E., Seth, H. & Riebe, I. AMPA-silent synapses in brain development and pathology. Nat. Rev. Neurosci. 14, 839–850 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Ford, K. J. & Feller, M. B. Assembly and disassembly of a retinal cholinergic network. Vis. Neurosci. 29, 61–71 (2012).

    Article  PubMed  Google Scholar 

  122. Skrapits, K. et al. Neuropeptide co-expression in hypothalamic kisspeptin neurons of laboratory animals and the human. Front. Neurosci. 9, 29 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Herget, U. & Ryu, S. Coexpression analysis of nine neuropeptides in the neurosecretory preoptic area of larval zebrafish. Front. Neuroanat. 9, 2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hanchate, N. K. et al. Connect-seq to superimpose molecular on anatomical neural circuit maps. Proc. Natl Acad. Sci. USA 117, 4375–4384 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Agoston, Z. et al. Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141, 28–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Gabilondo, H. et al. Neuronal cell fate specification by the convergence of different spatiotemporal cues on a common terminal selector cascade. PLoS Biol. 14, e1002450 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Yee, C. L., Wang, Y., Anderson, S., Ekker, M. & Rubenstein, J. L. R. Arcuate nucleus expression of NKX2.1 and DLX and lineages expressing these transcription factors in neuropeptide Y(+), proopiomelanocortin(+), and tyrosine hydroxylase(+) neurons in neonatal and adult mice. J. Comp. Neurol. 517, 37–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Ruediger, T. & Bolz, J. Neurotransmitters and the development of neuronal circuits. Adv. Exp. Med. Biol. 621, 104–115 (2007).

    Article  PubMed  Google Scholar 

  129. Komuro, H. & Rakic, P. Modulation of neuronal migration by NMDA receptors. Science 260, 95–97 (1993).

    Article  CAS  PubMed  Google Scholar 

  130. Zheng, J. Q., Felder, M., Connor, J. A. & Poo, M. M. Turning of nerve growth cones induced by neurotransmitters. Nature 368, 140–144 (1994).

    Article  CAS  PubMed  Google Scholar 

  131. Bouret, S. G. Neurodevelopmental actions of leptin. Brain Res. 1350, 2–9 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Dickson, B. J. Development. Wiring the brain with insulin. Science 300, 440–441 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Fernandez, A. M. & Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 13, 225–239 (2012).

    Article  CAS  PubMed  Google Scholar 

  134. Steculorum, S. M. et al. Neonatal ghrelin programs development of hypothalamic feeding circuits. J. Clin. Invest. 125, 846–858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wilkinson, D. G. Multiple roles of EPH receptors and ephrins in neural development. Nat. Rev. Neurosci. 2, 155–164 (2001).

    Article  CAS  PubMed  Google Scholar 

  136. Yu, T. W. & Bargmann, C. I. Dynamic regulation of axon guidance. Nat. Neurosci. 4, 1169–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  PubMed  Google Scholar 

  138. Höpker, V. H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    Article  PubMed  Google Scholar 

  139. Graef, I. A. et al. Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Alpár, A. et al. Endocannabinoids modulate cortical development by configuring Slit2/Robo1 signalling. Nat. Commun. 5, 4421 (2014).

    Article  PubMed  Google Scholar 

  141. Harkany, T. et al. The emerging functions of endocannabinoid signaling during CNS development. Trends Pharmacol. Sci. 28, 83–92 (2007).

    Article  CAS  PubMed  Google Scholar 

  142. Berghuis, P. et al. Hardwiring the brain: endocannabinoids shape neuronal connectivity. Science 316, 1212–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Ahima, R. S., Prabakaran, D. & Flier, J. S. Postnatal leptin surge and regulation of circadian rhythm of leptin by feeding. Implications for energy homeostasis and neuroendocrine function. J. Clin. Invest. 101, 1020–1027 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cedernaes, J., Waldeck, N. & Bass, J. Neurogenetic basis for circadian regulation of metabolism by the hypothalamus. Genes Dev. 33, 1136–1158 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Carmona-Alcocer, V., Rohr, K. E., Joye, D. A. M. & Evans, J. A. Circuit development in the master clock network of mammals. Eur. J. Neurosci. 51, 82–108 (2020).

    Article  PubMed  Google Scholar 

  146. Bedont, J. L. et al. Lhx1 controls terminal differentiation and circadian function of the suprachiasmatic nucleus. Cell Rep. 7, 609–622 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Shibata, S. & Moore, R. Y. Development of neuronal activity in the rat suprachiasmatic nucleus. Dev. Brain Res. 34, 311–315 (1987).

    Article  Google Scholar 

  148. Fernandez, D. C., Chang, Y.-T., Hattar, S. & Chen, S.-K. Architecture of retinal projections to the central circadian pacemaker. Proc. Natl Acad. Sci. USA 113, 6047–6052 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Byerly, M. S. & Blackshaw, S. Vertebrate retina and hypothalamus development. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 380–389 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Astiz, M. & Oster, H. Perinatal programming of Circadian clock-stress crosstalk. Neural Plast. 2018, 5689165 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Watts, A. G., Swanson, L. W. & Sanchez-Watts, G. Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J. Comp. Neurol. 258, 204–229 (1987).

    Article  CAS  PubMed  Google Scholar 

  152. Reppert, S. M. & Schwartz, W. J. Maternal suprachiasmatic nuclei are necessary for maternal coordination of the developing circadian system. J. Neurosci. 6, 2724–2729 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Honma, S. Development of the mammalian circadian clock. Eur. J. Neurosci. 51, 182–193 (2020).

    Article  PubMed  Google Scholar 

  154. González, M. M. C. Dim light at night and constant darkness: two frequently used lighting conditions that jeopardize the health and well-being of laboratory rodents. Front. Neurol. 9, 609 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Bouret, S. G. In Appetite and Food Intake: Central Control (ed. Harris, R. B. S.) (CRC Press/Taylor & Francis, 2017).

  156. Jašarević, E. et al. The maternal vaginal microbiome partially mediates the effects of prenatal stress on offspring gut and hypothalamus. Nat. Neurosci. 21, 1061–1071 (2018).

    Article  PubMed  Google Scholar 

  157. Cryan, J. F. & Dinan, T. G. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13, 701–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Baquero, A. F. et al. Developmental switch of leptin signaling in arcuate nucleus neurons. J. Neurosci. 34, 9982–9994 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zeltser, L. M. Feeding circuit development and early-life influences on future feeding behaviour. Nat. Rev. Neurosci. 19, 302–316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Caron, E., Ciofi, P., Prevot, V. & Bouret, S. G. Alteration in neonatal nutrition causes perturbations in hypothalamic neural circuits controlling reproductive function. J. Neurosci. 32, 11486–11494 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Elias, C. F. & Purohit, D. Leptin signaling and circuits in puberty and fertility. Cell Mol. Life Sci. 70, 841–862 (2013).

    Article  CAS  PubMed  Google Scholar 

  162. Serrano-Saiz, E. & Isogai, Y. Single-cell molecular and developmental perspectives of sexually dimorphic circuits underlying innate social behaviors. Curr. Opin. Neurobiol. 68, 159–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  163. Bouret, S. G., Draper, S. J. & Simerly, R. B. Trophic action of leptin on hypothalamic neurons that regulate feeding. Science 304, 108–110 (2004).

    Article  CAS  PubMed  Google Scholar 

  164. Udagawa, J., Hatta, T., Naora, H. & Otani, H. Expression of the long form of leptin receptor (Ob-Rb) mRNA in the brain of mouse embryos and newborn mice. Brain Res. 868, 251–258 (2000).

    Article  CAS  PubMed  Google Scholar 

  165. Bouret, S. G., Bates, S. H., Chen, S., Myers, M. G. & Simerly, R. B. Distinct roles for specific leptin receptor signals in the development of hypothalamic feeding circuits. J. Neurosci. 32, 1244–1252 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Carlo, A.-S., Meyerhof, W. & Williams, L. M. Early developmental expression of leptin receptor gene and [125I]leptin binding in the rat forebrain. J. Chem. Neuroanat. 33, 155–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  167. Cottrell, E. C. et al. Developmental changes in hypothalamic leptin receptor: relationship with the postnatal leptin surge and energy balance neuropeptides in the postnatal rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R631–R639 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kuiri-Hänninen, T., Sankilampi, U. & Dunkel, L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm. Res. Paediatr. 82, 73–80 (2014).

    Article  PubMed  Google Scholar 

  169. Gottsch, M. L. et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology 145, 4073–4077 (2004).

    Article  CAS  PubMed  Google Scholar 

  170. Clarkson, J., d’Anglemont de Tassigny, X., Colledge, W. H., Caraty, A. & Herbison, A. E. Distribution of kisspeptin neurones in the adult female mouse brain. J. Neuroendocrinol. 21, 673–682 (2009).

    Article  CAS  PubMed  Google Scholar 

  171. Messina, A. et al. A microRNA switch regulates the rise in hypothalamic GnRH production before puberty. Nat. Neurosci. 19, 835–844 (2016). This paper identifies a microRNA-mediated epigenetic mechanism to control GnRH expression for infantile-to-juvenile transition.

    Article  CAS  PubMed  Google Scholar 

  172. Cinquina, V. et al. Life-long epigenetic programming of cortical architecture by maternal “Western” diet during pregnancy. Mol. Psychiatry 25, 22–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  173. Cristino, L. et al. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. Proc. Natl Acad. Sci. USA 110, E2229–E2238 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kauffman, A. S. et al. Sexual differentiation of Kiss1 gene expression in the brain of the rat. Endocrinology 148, 1774–1783 (2007).

    Article  CAS  PubMed  Google Scholar 

  175. Kauffman, A. S. Sexual differentiation and the Kiss1 system: hormonal and developmental considerations. Peptides 30, 83–93 (2009).

    Article  CAS  PubMed  Google Scholar 

  176. Pellegrino, G. et al. GnRH neurons recruit astrocytes in infancy to facilitate network integration and sexual maturation. Nat. Neurosci. 24, 1660–1672 (2021). This paper demonstrates how neuron–glia interplay primes sexual maturation.

    Article  CAS  PubMed  Google Scholar 

  177. Savic, I., Garcia-Falgueras, A. & Swaab, D. F. Sexual differentiation of the human brain in relation to gender identity and sexual orientation. Prog. Brain Res. 186, 41–62 (2010).

    Article  PubMed  Google Scholar 

  178. Zup, S. L. & Forger, N. G. in Reference Module in Neuroscience and Biobehavioral Psychology 323–341(Elsevier, 2017).

  179. Morris, J. A., Jordan, C. L. & Breedlove, S. M. Sexual differentiation of the vertebrate nervous system. Nat. Neurosci. 7, 1034–1039 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. McCarthy, M. M. Estradiol and the developing brain. Physiol. Rev. 88, 91–124 (2008).

    Article  CAS  PubMed  Google Scholar 

  181. He, Z., Ferguson, S. A., Cui, L., Greenfield, L. J. & Paule, M. G. Development of the sexually dimorphic nucleus of the preoptic area and the influence of estrogen-like compounds. Neural Regen. Res. 8, 2763–2774 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Sharma, K. et al. Sexually dimorphic oxytocin receptor-expressing neurons in the preoptic area of the mouse brain. PLoS One 14, e0219784 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. van Veen, J. E. et al. Hypothalamic estrogen receptor alpha establishes a sexually dimorphic regulatory node of energy expenditure. Nat. Metab. 2, 351–363 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Simerly, R. B., Swanson, L. W. & Gorski, R. A. The distribution of monoaminergic cells and fibers in a periventricular preoptic nucleus involved in the control of gonadotropin release: immunohistochemical evidence for a dopaminergic sexual dimorphism. Brain Res. 330, 55–64 (1985).

    Article  CAS  PubMed  Google Scholar 

  185. Tsukahara, S. & Morishita, M. Sexually dimorphic formation of the preoptic area and the bed nucleus of the stria terminalis by neuroestrogens. Front. Neurosci. 14, 797 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Moe, Y. et al. A sexually dimorphic area of the dorsal hypothalamus in mice and common marmosets. Endocrinology 157, 4817–4828 (2016).

    Article  CAS  PubMed  Google Scholar 

  187. Ahima, R. S. Global warming threatens human thermoregulation and survival. J. Clin. Invest. 130, 559–561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Okamoto-Mizuno, K. & Mizuno, K. Effects of thermal environment on sleep and circadian rhythm. J. Physiol. Anthropol. 31, 14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Baek, S. & Lee, I. Single-cell ATAC sequencing analysis: from data preprocessing to hypothesis generation. Comput. Struct. Biotechnol. J. 18, 1429–1439 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Kashima, Y. et al. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 52, 1419–1427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kelsey, G., Stegle, O. & Reik, W. Single-cell epigenomics: recording the past and predicting the future. Science 358, 69–75 (2017).

    Article  CAS  PubMed  Google Scholar 

  193. Wang, N. et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of microRNA regulation. Nat. Commun. 10, 95 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Baratta, A. M., Rathod, R. S., Plasil, S. L., Seth, A. & Homanics, G. E. Exposure to drugs of abuse induce effects that persist across generations. Int. Rev. Neurobiol. 156, 217–277 (2021).

    Article  PubMed  Google Scholar 

  195. Champagne, F. A. Interplay between paternal germline and maternal effects in shaping development: The overlooked importance of behavioural ecology. Funct. Ecol. 34, 401–413 (2020).

    Article  Google Scholar 

  196. Kaspar, D., Hastreiter, S., Irmler, M., Hrabé de Angelis, M. & Beckers, J. Nutrition and its role in epigenetic inheritance of obesity and diabetes across generations. Mamm. Genome 31, 119–133 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bohacek, J. & Mansuy, I. M. Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38, 220–236 (2013).

    Article  CAS  PubMed  Google Scholar 

  198. Yohn, N. L., Bartolomei, M. S. & Blendy, J. A. Multigenerational and transgenerational inheritance of drug exposure: the effects of alcohol, opiates, cocaine, marijuana, and nicotine. Prog. Biophys. Mol. Biol. 118, 21–33 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Dietz, D. M. et al. Paternal transmission of stress-induced pathologies. Biol. Psychiatry 70, 408–414 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Maze, I. & Nestler, E. J. The epigenetic landscape of addiction. Ann. N. Y. Acad. Sci. 1216, 99–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Bara, A., Ferland, J.-M. N., Rompala, G., Szutorisz, H. & Hurd, Y. L. Cannabis and synaptic reprogramming of the developing brain. Nat. Rev. Neurosci. 22, 423–438 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Meccariello, R. et al. The epigenetics of the endocannabinoid system. Int. J. Mol. Sci. 21, 1113 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  203. Szutorisz, H. & Hurd, Y. L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 (2018).

    Article  CAS  PubMed  Google Scholar 

  204. Jutras-Aswad, D., DiNieri, J. A., Harkany, T. & Hurd, Y. L. Neurobiological consequences of maternal cannabis on human fetal development and its neuropsychiatric outcome. Eur. Arch. Psychiatry Clin. Neurosci. 259, 395–412 (2009).

    Article  PubMed  Google Scholar 

  205. Tortoriello, G. et al. Miswiring the brain: Δ9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J. 33, 668–685 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Benevento, M., van de Molengraft, M., van Westen, R., van Bokhoven, H. & Kasri, N. N. The role of chromatin repressive marks in cognition and disease: a focus on the repressive complex GLP/G9a. Neurobiol. Learn. Mem. 124, 88–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  207. Gräff, J. & Mansuy, I. M. Epigenetic codes in cognition and behaviour. Behav. Brain Res. 192, 70–87 (2008).

    Article  PubMed  Google Scholar 

  208. Li, G. et al. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus. Hum. Mol. Genet. 23, 1579–1590 (2014).

    Article  PubMed  Google Scholar 

  209. Le Thuc, O., Gruber, T., Tschöp, M. H. & García-Cáceres, C. in Glial-Neuronal Signaling in Neuroendocrine Systems (eds. Tasker, J. G., Bains, J. S. & Chowen, J. A.) vol. 11, 127–153 (Springer, 2021).

  210. Fuente-Martín, E. et al. Leptin regulates glutamate and glucose transporters in hypothalamic astrocytes. J. Clin. Invest. 122, 3900–3913 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  211. García-Cáceres, C. et al. Role of astrocytes, microglia, and tanycytes in brain control of systemic metabolism. Nat. Neurosci. 22, 7–14 (2019).

    Article  PubMed  Google Scholar 

  212. García-Cáceres, C. et al. Astrocytic insulin signaling couples brain glucose uptake with nutrient availability. Cell 166, 867–880 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Kim, J. G. et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nat. Neurosci. 17, 908–910 (2014).

    Article  CAS  PubMed  Google Scholar 

  214. Hrvatin, S. et al. Neurons that regulate mouse torpor. Nature 583, 115–121 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Zhang, L. et al. Behavioral role of PACAP signaling reflects its selective distribution in glutamatergic and GABAergic neuronal subpopulations. Elife 10, e61718 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Ollmann, M. M. et al. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  217. Alpár, A., Benevento, M., Romanov, R. A., Hökfelt, T. & Harkany, T. Hypothalamic cell diversity: non-neuronal codes for long-distance volume transmission by neuropeptides. Curr. Opin. Neurobiol. 56, 16–23 (2019).

    Article  PubMed  Google Scholar 

  218. Gundlach, A. L., Burazin, T. C. & Larm, J. A. Distribution, regulation and role of hypothalamic galanin systems: renewed interest in a pleiotropic peptide family. Clin. Exp. Pharmacol. Physiol. 28, 100–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  219. Yeo, S.-H. & Colledge, W. H. The role of Kiss1 neurons as integrators of endocrine, metabolic, and environmental factors in the hypothalamic-pituitary-gonadal axis. Front. Endocrinol. 9, 188 (2018).

    Article  Google Scholar 

  220. Brown, J. A. et al. Distinct subsets of lateral hypothalamic neurotensin neurons are activated by leptin or dehydration. Sci. Rep. 9, 1873 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  221. Vadnie, C. A. et al. Activation of neurotensin receptor type 1 attenuates locomotor activity. Neuropharmacology 85, 482–492 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. McCormack, S. E., Blevins, J. E. & Lawson, E. A. Metabolic effects of oxytocin. Endocr. Rev. 41, 121–145 (2020).

    Article  Google Scholar 

  223. Przewłocki, R. et al. The opioid peptide dynorphin, circadian rhythms, and starvation. Science 219, 71–73 (1983).

    Article  PubMed  Google Scholar 

  224. Ferreira, J. G. P., Bittencourt, J. C. & Adamantidis, A. Melanin-concentrating hormone and sleep. Curr. Opin. Neurobiol. 44, 152–158 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Osterstock, G. et al. Somatostatin triggers rhythmic electrical firing in hypothalamic GHRH neurons. Sci. Rep. 6, 24394 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhang, X. & van den Pol, A. N. Dopamine/tyrosine hydroxylase neurons of the hypothalamic arcuate nucleus release GABA, communicate with dopaminergic and other arcuate neurons, and respond to dynorphin, met-enkephalin, and oxytocin. J. Neurosci. 35, 14966–14982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Korshunov, K. S., Blakemore, L. J. & Trombley, P. Q. Dopamine: a modulator of circadian rhythms in the central nervous system. Front. Cell Neurosci. 11, 91 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Squillacioti, C., Pelagalli, A., Liguori, G. & Mirabella, N. Urocortins in the mammalian endocrine system. Acta Vet. Scand. 61, 46 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Steyn, F. J., Tolle, V., Chen, C. & Epelbaum, J. Neuroendocrine regulation of growth hormone secretion. Compr. Physiol. 6, 687–735 (2016).

    Article  PubMed  Google Scholar 

  230. Zeisel, A. et al. Molecular architecture of the mouse nervous system. Cell 174, 999–1014.e22 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Blakely, R. D. & Edwards, R. H. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb. Perspect. Biol. 4, a005595 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Chaudhry, F. A. et al. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission. Cell 99, 769–780 (1999).

    Article  CAS  PubMed  Google Scholar 

  233. Dulcis, D., Jamshidi, P., Leutgeb, S. & Spitzer, N. C. Neurotransmitter switching in the adult brain regulates behavior. Science 340, 449–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  234. Merkle, F. T. et al. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development 142, 633–643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Huang, W.-K. et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell 28, 1657–1670.e10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank E.O. Tretiakov for conceptual discussions on data analysis and interpretation. This work was supported by the Swedish Research Council (2020-01688 to T.Hö., 2018-02838 to T.Ha.); Novo Nordisk Foundation (NNF20OC0063667 to T.Ha., T.Hö.); Hjärnfonden (FO2019-0277 to T.Ha.), European Research Council (SECRET-CELLS, 2015-AdG-695136 and FOODFORLIFE, 2020-AdG-101021016 to T.Ha.) and intramural funds of the Medical University of Vienna (T.Ha.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for the article, substantial discussion of content and writing the article. M.B. and T.Ha. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Tibor Harkany.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Neuroscience thanks D. Kurrasch, V. Prevot and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Infundibulum

Tubular structure that connects the posterior pituitary to the hypothalamus.

Autonomic behaviours

Unconscious behavioural responses that are evoked by reflex arcs.

Fast neurotransmitter

A chemical messenger loaded into synaptic vesicles by high-affinity vesicular transporters and released by excitable cells at specialized junctions to induce electrochemical signals through voltage-gated receptors to activate or inhibit target cells.

Neuropeptide

A small protein that is released extrasynaptically from large dense core vesicles and that binds to metabotropic G protein-coupled receptors, activating second messenger cascades to regulate gene transcription, modulate synaptic transmission and/or stabilize circuit connectivity.

Transcription factor

A protein that modulates gene transcription by directly binding to specific DNA sequences at the gene promoter.

Convergence

An inward flux from multiple points of origin to an infinitesimal volumetrically defined space. In molecular neurobiology, convergence is used for transcription factors to jointly identify cell types.

Divergence

An outward flux from a single point of origin to a volumetrically defined space around the initial point. In molecular neurobiology, divergence describes when cell fate is shaped by differential gene expression within gene regulatory networks driven by an identical master gene.

Telencephalic

Relating to the telencephalon, the anterior subdivision of the encephalic vesicle that generates the neocortical structures in vertebrates.

Neuromere

A morphologically and molecularly defined transient segment or subdivision of the developing nervous system.

Diencephalic

Relating to the diencephalon, the encephalic subdivision between the telencephalon and the brainstem, chiefly corresponding to thalamic areas.

Gene regulatory networks

(GRNs). Also known as regulons; a matrix of interacting genes arranged around a master gene and regulated in a hierarchical fashion as a single unit. A GRN thus includes differentially expressed genes reflecting cell states.

Mesoderm

An embryonic germinal layer positioned between the ectoderm and the endoderm that consists of progenitor cells that generate bone, cartilage, musculature and the vascular system.

Ectoderm

The most external embryonal germinal layer populated by progenitor cells that generate the skin and the nervous system (neuroectoderm).

Conjoined invagination

An inward fold of two adjacent anatomical structures.

Radial glia scaffold

A basic map of processes emanating from radial glial cells that serves as a guidance structure for migrating neuroblasts.

Neural progenitor cells

(NPCs). A fate stage that precedes that of the neural precursors and in which multi-potency is retained.

Cell-autonomous stochastic fate restriction

A set of randomized genetic commands in a given cell that determines the cell’s molecular identity, independent from any external influence.

Genetic cascade

A hierarchical temporal succession of upstream gene expression commands that activate or repress downstream genetic programmes to drive cell-fate specification.

Microdomains

Circumscribed regions in the brain that exhibit a specific molecular signature.

Nucleokinesis

The active translocation of the nucleus during cell migration.

Tanycytes

A type of radial glia positioned along the mid-ventral wall of the third ventricle in the adult brain.

Neural precursor cells

A tissue-specific cell type that retains some reproductive potential but can give rise to only a limited number of cell lineages intrinsic to the particular tissue in which it resides.

Epigenetic regulatory mechanisms

Molecular commands that regulate gene expression and protein translation without altering the DNA sequence through post-translational modifications of histones, mRNA and microRNAs, amongst others.

Adhesion molecules

Cell-surface proteins that establish and stabilize physical contacts between cells or with the extracellular matrix.

Pro-opiomelanocortin

(POMC). A multifunctional neuropeptide precursor that gives rise to α-melanocyte-stimulating hormone, adrenocorticotropic hormone and β-endorphin upon enzymatic cleavage.

Gene selectors

Genes encoding transcription factors that are necessary to specify or differentiate anatomical areas.

Minipuberty

Physiological activation of the hypothalamic–pituitary–gonadal axis that occurs in early postnatal stages and is necessary for gonadal development and fertility.

Chromatin condensation

The process of compacting long stretches of DNA around histone octamers that prevents transcription factor binding, leading to gene silencing.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benevento, M., Hökfelt, T. & Harkany, T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 23, 611–627 (2022). https://doi.org/10.1038/s41583-022-00615-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-022-00615-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing