Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Directly targeting transcriptional dysregulation in cancer

Abstract

Drugs that target intracellular signalling pathways have markedly improved progression-free survival of patients with cancers who were previously regarded as untreatable. However, the rapid emergence of therapeutic resistance, as a result of bypass signalling or downstream mutation within kinase-mediated signalling cascades, has curtailed the benefit gained from these therapies. Such resistance mechanisms are facilitated by the linearity and redundancy of kinase signalling pathways. We argue that, in each cancer, the dysregulation of key transcriptional regulators not only defines the cancer phenotype but is essential for its development and maintenance. Furthermore, we propose that, as therapeutic targets, these transcriptional regulators are less prone to bypass by alternative mutational events or clonal heterogeneity, and therefore we must rekindle our efforts to directly target transcriptional regulation across a broad range of cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The architecture of oncogenic signalling pathways provides multiple opportunities for bypass-mediated therapeutic resistance.
Figure 2: The balance between proliferation and differentiation is directly dependent on transcription.
Figure 3: Transcriptional regulators such as MYB induce the expression of multiple pro-oncogenic drivers.
Figure 4: Complexity of transcription factor networks.
Figure 5: Modes of targeting transcriptional regulators.

Similar content being viewed by others

References

  1. Vogelstein, B. & Kinzler, K. W. The multistep nature of cancer. Trends Genet. 9, 138–141 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Berger, N. A. et al. Cancer in the elderly. Trans. Am. Clin. Climatol. Assoc. 117, 147–156 (2006).

    PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Giuriato, S., Rabin, K., Fan, A. C., Shachaf, C. M. & Felsher, D. W. Conditional animal models: a strategy to define when oncogenes will be effective targets to treat cancer. Semin. Cancer Biol. 14, 3–11 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Felsher, D. W. Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit? Cancer Res. 68, 3081–3086 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Weinstein, I. B. & Joe, A. K. Mechanisms of disease: oncogene addiction — a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol. 3, 448–457 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Orwell, G. Animal Farm (Penguin Group 1946).

    Google Scholar 

  8. Fojo, T., Mailankody, S. & Lo, A. Unintended consequences of expensive cancer therapeutics — the pursuit of marginal indications and a me-too mentality that stifles innovation and creativity: the John Conley Lecture. JAMA Otolaryngol. Head Neck Surg. 140, 1225–1236 (2014).

    Article  PubMed  Google Scholar 

  9. Hartsough, E., Shao, Y. & Aplin, A. E. Resistance to RAF inhibitors revisited. J. Invest. Dermatol. 134, 319–325 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Kwong, L. N. & Davies, M. A. Targeted therapy for melanoma: rational combinatorial approaches. Oncogene 33, 1–9 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Bishop, J. M. Molecular themes in oncogenesis. Cell 64, 235–248 (1991).

    Article  CAS  PubMed  Google Scholar 

  12. García-Escudero, R. & Paramio, J.M. Gene expression profiling as a tool for basic analysis and clinical application of human cancer. Mol. Carcinog. 47, 573–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Bennicelli, J. L., Edwards, R. H. & Barr, F. G. Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc. Natl Acad. Sci. USA 93, 5455–5459 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer, C. et al. The MLL recombinome of acute leukemias in 2013. Leukemia 27, 2165–2176 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nat. Rev. Cancer 7, 233–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Peter, M. et al. An EWS/ERG fusion with a truncated N-terminal domain of EWS in a Ewing's tumor. Int. J. Cancer 67, 339–342 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Sorensen, P. H. & Triche, T. J. Gene fusions encoding chimaeric transcription factors in solid tumours. Semin. Cancer Biol. 7, 3–14 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Nambiar, M., Kari, V. & Raghavan, S. C. Chromosomal translocations in cancer. Biochim. Biophys. Acta 1786, 139–152 (2008).

    CAS  PubMed  Google Scholar 

  19. Simó-Riudalbas, L. & Esteller, M. Cancer genomics identifies disrupted epigenetic genes. Hum. Genet. 133, 713–725 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cucco, F. et al. Mutant cohesin drives chromosomal instability in early colorectal adenomas. Hum. Mol. Genet. 23, 6773–6778 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Solomon, D. A., Kim, J. S. & Waldman, T. Cohesin gene mutations in tumorigenesis: from discovery to clinical significance. BMB Rep. 47, 299–310 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bojesen, S. E. et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat. Genet. 45, 371–384 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nickerson, M. L. et al. Concurrent alterations in TERT, KDM6A, and the BRCA pathway in bladder cancer. Clin. Cancer Res. 20, 4935–4948 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Griewank, K. G. et al. TERT promoter mutation status as an independent prognostic factor in cutaneous melanoma. J. Natl Cancer Inst. 106, doi:10.1093/jnci/dju246 (2014).

  26. Mansour, M. R. et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vicente-Dueñas, C., Romero-Camarero, I., Cobaleda, C. & Sánchez-García, I. Function of oncogenes in cancer development: a changing paradigm. EMBO J. 32, 1502–1513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burke, J. M. Dx/Rx: Leukemia. Dx/Rx Oncology Series 1–11 (Jones and Bartlett, 2012).

    Google Scholar 

  29. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zuber, J. et al. An integrated approach to dissecting oncogene addiction implicates a Myb-coordinated self-renewal program as essential for leukemia maintenance. Genes Dev. 25, 1628–1640 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Germann, M. et al. Tripartite interactions between Wnt signaling, Notch and Myb for stem/progenitor cell functions during intestinal tumorigenesis. Stem Cell Res. 13, 355–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Rowley, J. D. Chromosomes in leukemia and beyond: from irrelevant to central players. Annu. Rev. Genom. Hum. Genet. 10, 1–18 (2009).

    Article  CAS  Google Scholar 

  33. Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  34. Miyamoto, T., Weissman, I. L. & Akashi, K. AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc. Natl Acad. Sci. USA 97, 7521–7526 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shlush, L. I. et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506, 328–333 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Corces-Zimmerman, M. R., Hong, W. J., Weissman, I. L., Medeiros, B. C. & Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc. Natl Acad. Sci. USA 111, 2548–2553 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Corces-Zimmerman, M. R. & Majeti, R. Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis. Leukemia 28, 2276–2282 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Clevers, H. & Nusse, R. Wnt/β-catenin signaling and disease. Cell 149, 1192–1205 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Morin, P. J. et al. Activation of β-catenin–Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Walther, A. et al. Genetic prognostic and predictive markers in colorectal cancer. Nat. Rev. Cancer 9, 489–499 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, H. et al. Cohesin Rad21 mediates LOH and is up-regulated via Wnt promoting transcriptional dysregulation in GI tumors. Cell Rep. 9, 1781–1797 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Gasi Tandefelt, D., Boormans, J., Hermans, K. & Trapman, J. ETS fusion genes in prostate cancer. Endocr. Relat. Cancer 21, R143–R152 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Tao, J. et al. Notch activation as a driver of osteogenic sarcoma. Cancer Cell 26, 390–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ranganathan, P., Weaver, K. L. & Capobianco, A. J. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat. Rev. Cancer 11, 338–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Schleiermacher, G., Janoueix-Lerosey, I. & Delattre, O. Recent insights into the biology of neuroblastoma. Int. J. Cancer 135, 2249–2261 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).

    Article  CAS  PubMed  Google Scholar 

  48. D'Alfonso, T. M. et al. MYBNFIB gene fusion in adenoid cystic carcinoma of the breast with special focus paid to the solid variant with basaloid features. Hum. Pathol. 45, 2270–2280 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Mitani, Y. et al. Comprehensive analysis of the MYBNFIB gene fusion in salivary adenoid cystic carcinoma: incidence, variability, and clinicopathologic significance. Clin. Cancer Res. 16, 4722–4731 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Persson, M. et al. Recurrent fusion of MYB and NFIB transcription factor genes in carcinomas of the breast and head and neck. Proc. Natl Acad. Sci. USA 106, 18740–18744 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  51. French, C. A. The importance of diagnosing NUT midline carcinoma. Head Neck Pathol. 7, 11–16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. French, C. A. Pathogenesis of NUT midline carcinoma. Annu. Rev. Pathol. 7, 247–265 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto, S. et al. JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell 25, 762–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sodir, N. M. & Evan, G. I. Finding cancer's weakest link. Oncotarget 2, 1307–1313 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pattabiraman, D. R. & Gonda, T. J. Role and potential for therapeutic targeting of MYB in leukemia. Leukemia 27, 269–277 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Jin, S. et al. c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis. J. Clin. Invest. 120, 593–606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pattabiraman, D. R. et al. Interaction of c-Myb with p300 is required for the induction of acute myeloid leukemia (AML) by human AML oncogenes. Blood 123, 2682–2690 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Ramsay, R. G. & Gonda, T. J. MYB function in normal and cancer cells. Nat. Rev. Cancer 8, 523–534 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Miao, R. Y. et al. MYB is essential for mammary tumorigenesis. Cancer Res. 71, 7029–7037 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Shi, J. & Vakoc, C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Mol. Cell 54, 728–736 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Thomas, S. J., Snowden, J. A., Zeidler, M. P. & Danson, S. J. The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br. J. Cancer 113, 365–371 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Perkins, N. D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer 12, 121–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  63. Gonnissen, A., Isebaert, S. & Haustermans, K. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened. Oncotarget 6, 13899–13913 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bewry, N. N. et al. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol. Cancer Ther. 7, 3169–3175 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haferlach, T., Bacher, U., Kern, W., Schnittger, S. & Haferlach, C. The diagnosis of BCR/ABL-negative chronic myeloproliferative diseases (CMPD): a comprehensive approach based on morphology, cytogenetics, and molecular markers. Ann. Hematol. 87, 1–10 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Serinsöz, E. et al. Aberrant expression of β-catenin discriminates acute myeloid leukaemia from acute lymphoblastic leukaemia. Br. J. Haematol. 126, 313–319 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Charbel, C. et al. NRAS mutation is the sole recurrent somatic mutation in large congenital melanocytic nevi. J. Invest. Dermatol. 134, 1067–1074 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Tschandl, P. et al. NRAS and BRAF mutations in melanoma-associated nevi and uninvolved nevi. PLoS ONE 8, e69639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ceol, C. J. et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature 471, 513–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rozengurt, E., Soares, H. P. & Sinnet-Smith, J. Suppression of feedback loops mediated by PI3K/mTOR induces multiple overactivation of compensatory pathways: an unintended consequence leading to drug resistance. Mol. Cancer Ther. 13, 2477–2478 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lackner, M. R., Wilson, T. R. & Settleman, J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol. 8, 999–1014 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Solit, D. B. & Rosen, N. Towards a unified model of RAF inhibitor resistance. Cancer Discov. 4, 27–30 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang, S. E. et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Sos, M. L. et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 69, 3256–3261 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Meyer, S. C. & Levine, R. L. Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin. Cancer Res. 20, 2051–2059 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nasr, R. et al. Eradication of acute promyelocytic leukemia-initiating cells through PML-RARA degradation. Nat. Med. 14, 1333–1342 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Grimwade, D., Mistry, A. R., Solomon, E. & Guidez, F. Acute promyelocytic leukemia: a paradigm for differentiation therapy. Cancer Treat. Res. 145, 219–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 106, 3342–3347 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Stegle, O., Teichmann, S. A. & Marioni, J. C. Computational and analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16, 133–145 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Berg, T. et al. Small-molecule antagonists of Myc/Max dimerization inhibit Myc-induced transformation of chicken embryo fibroblasts. Proc. Natl Acad. Sci. USA 99, 3830–3835 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Harvey, S. R. et al. Small-molecule inhibition of c-MYC:MAX leucine zipper formation is revealed by ion mobility mass spectrometry. J. Am. Chem. Soc. 134, 19384–19392 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Müller, I. et al. Targeting of the MYCN protein with small molecule c-MYC inhibitors. PLoS ONE 9, e97285 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pellegrino, S. et al. Molecular insights into dimerization inhibition of c-Maf transcription factor. Biochim. Biophys. Acta 1844, 2108–2115 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Fung, S. M., Ramsay, G. & Katzen, A. L. MYB and CBP: physiological relevance of a biochemical interaction. Mech. Dev. 120, 711–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Oelgeschläger, M., Janknecht, R., Krieg, J., Schreek, S. & Lüscher, B. Interaction of the co-activator CBP with Myb proteins: effects on Myb-specific transactivation and on the cooperativity with NF-M. EMBO J. 15, 2771–2780 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Sampurno, S. et al. The Myb–p300–CREB axis modulates intestine homeostasis, radiosensitivity and tumorigenesis. Cell Death Dis. 4, e605 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Grossmann, T. N. et al. Inhibition of oncogenic Wnt signaling through direct targeting of β-catenin. Proc. Natl Acad. Sci. USA 109, 17942–17947 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Uttarkar, S. et al. Naphthol AS-E phosphate inhibits the activity of the transcription factor Myb by blocking the interaction with the KIX domain of the coactivator p300. Mol. Cancer Ther. 14, 1276–1285 (2015).

    Article  CAS  PubMed  Google Scholar 

  91. Moellering, R. E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Clausen, D. M. et al. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J. Pharmacol. Exp. Ther. 335, 715–727 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Helin, K. & Dhanak, D. Chromatin proteins and modifications as drug targets. Nature 502, 480–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Griffiths, E. A. & Gore, S. D. DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin. Hematol. 45, 23–30 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Marks, P. et al. Histone deacetylases and cancer: causes and therapies. Nat. Rev. Cancer 1, 194–202 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Marks, P. A., Sheffery, M., Ramsay, R., Ikeda, K. & Rifkind, R. A. Induction of transformed cells to terminal differentiation. Ann. NY Acad. Sci. 511, 246–255 (1987).

    Article  CAS  PubMed  Google Scholar 

  97. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Liu, W., Deng, L., Song, Y. & Redell, M. DOT1L inhibition sensitizes MLL-rearranged AML to chemotherapy. PLoS ONE 9, e98270 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Davis, M. I. et al. Biochemical, cellular, and biophysical characterization of a potent inhibitor of mutant isocitrate dehydrogenase IDH1. J. Biol. Chem. 289, 13717–13725 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rohle, D. et al. An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells. Science 340, 626–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wyce, A. et al. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models. PLoS ONE 8, e72967 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Roe, J. S., Mercan, F., Rivera, K., Pappin, D. J. & Vakoc, C. R. BET bromodomain inhibition suppresses the function of hematopoietic transcription factors in acute myeloid leukemia. Mol. Cell 58, 1028–1039 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dolan, D. E. & Gupta, S. PD-1 pathway inhibitors: changing the landscape of cancer immunotherapy. Cancer Control 21, 231–237 (2014).

    Article  PubMed  Google Scholar 

  106. Naidoo, J., Page, D. B. & Wolchok, J. D. Immune modulation for cancer therapy. Br. J. Cancer 111, 2214–2219 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Carpinteri, S. et al. Optimizing DNA vaccines against nuclear oncogenes. ImmunoGastroenterol. 1, 108–118 (2012).

    Article  Google Scholar 

  108. Williams, B. B. et al. Induction of T cell-mediated immunity using a c-Myb DNA vaccine in a mouse model of colon cancer. Cancer Immunol. Immunother. 57, 1635–1645 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Cross, R. S. et al. Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin. Transl Immunol. 4, e30 (2015).

    Article  CAS  Google Scholar 

  110. Fuqua, S. A., Gu, G. & Rechoum, Y. Estrogen receptor (ER) α mutations in breast cancer: hidden in plain sight. Breast Cancer Res. Treat. 144, 11–19 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fong, C. Y. et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 525, 538–542 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gabay, M., Li, Y. & Felsher, D. W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med. 4, a014241 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pereira, L. A. et al. MYB elongation is regulated by the nucleic acid binding of NFκB p50 to the intronic stem-loop region. PLoS ONE 10, e0122919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mitra, P., Pereira, L. A., Drabsch, Y., Ramsay, R. G. & Gonda, T. J. Estrogen receptor-α recruits P-TEFb to overcome transcriptional pausing in intron 1 of the MYB gene. Nucleic Acids Res. 40, 5988–6000 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marks, P. A. & Breslow, R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotechnol. 25, 84–90 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Cross, R. S. et al. Therapeutic DNA vaccination against colorectal cancer by targeting the MYB oncoprotein. Clin. Transl Immunol. 4, e30 (2015).

    Article  CAS  Google Scholar 

  117. Copeland, A., Buglio, D. & Younes, A. Histone deacetylase inhibitors in lymphoma. Curr. Opin. Oncol. 22, 431–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Yardley, D. A. et al. Randomized phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor. J. Clin. Oncol. 31, 2128–2135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen, C. W. et al. DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat. Med. 21, 335–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Purow, B. Notch inhibition as a promising new approach to cancer therapy. Adv. Exp. Med. Biol. 727, 305–319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Relevant work in the authors' laboratories has been supported in part by grants from the National Health and Medical Research Council, Australia; Cancer Council Queensland, Australia; The World Cancer Research Fund International (formerly known as AICR), UK; and the Leukaemia Foundation of Australia. The authors also thank F. Simpson and M. Dawson for valuable comments on the manuscript, and apologize to the many authors whose work they could not cite owing to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Gonda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonda, T., Ramsay, R. Directly targeting transcriptional dysregulation in cancer. Nat Rev Cancer 15, 686–694 (2015). https://doi.org/10.1038/nrc4018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc4018

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer