Condensed-matter physics articles within Nature Communications

Featured

  • Comment
    | Open Access

    The enhanced Coulomb interaction in two dimensions leads to not only tightly bound excitons but also many-particle excitonic complexes: excitons interacting with other quasiparticles, which results in improved and even new exciton properties with better controls. Here, we summarize studies of excitonic complexes in monolayer transition metal dichalcogenides and their moiré heterojunctions, envisioning how to utilize them for exploring quantum many-body physics.

    • Xiaotong Chen
    • , Zhen Lian
    •  & Su-Fei Shi
  • Article
    | Open Access

    Ferroelectric transistors are promising building blocks for developing energy-efficient memory and logic applications. Here, the authors report a record high 300 K resistance on-off ratio achieved in ferroelectric-gated Mott transistors by exploiting a charge transfer layer to tailor the channel carrier density and mitigate the ferroelectric depolarization effect.

    • Yifei Hao
    • , Xuegang Chen
    •  & Xia Hong
  • Article
    | Open Access

    Heat conduction in solids is known to be contributed by phonons and electrons. Here, authors observe enhanced and non-diffusive thermal conductance mediated by surface phonon polaritons in polar dielectric nanoribbon waveguides.

    • Yu Pei
    • , Li Chen
    •  & Renkun Chen
  • Article
    | Open Access

    Charged impurities are a major source of charge noise in semiconductors. Here, using pump-probe time-resolved relative transmission measurements on cuprous oxide, the authors demonstrate a strategy for mitigating charged impurities by injection and subsequent breakdown of Rydberg excitons.

    • Martin Bergen
    • , Valentin Walther
    •  & Marc Aßmann
  • Article
    | Open Access

    Kondo materials exhibit extremely rich physics, from unconventional superconductivity to topological phases. Unfortunately, for a real material, direct solution of the Kondo lattice is practically impossible. Here, Simeth et al. present a tractable approach to this problem, showing how a multi-orbital periodic Anderson model can be reduced to a Kondo lattice model, and be applied to relevant materials and quantitatively validated with neutron spectroscopy.

    • W. Simeth
    • , Z. Wang
    •  & M. Janoschek
  • Article
    | Open Access

    The anomalous Hall effect is typically associated with ferromagnets and referred to as anomalous due to its persistence even after the applied magnetic field is removed, due to the net magnetization of the ferromagnet. Recently there has been much interest in antiferromagnets that can host an anomalous Hall effect, despite a vanishing magnetization, and here, Wang et al observe an anomalous Hall effect in collinearly antiferromagnetic chromium doped RuO2.

    • Meng Wang
    • , Katsuhiro Tanaka
    •  & Fumitaka Kagawa
  • Article
    | Open Access

    The metastable state with a complex domain structure in 1T-TaS2 has been intensively studied. Using a multi-tip scanning tunnelling microscope, Mraz et al. reveal the microscopic dynamics of the current-pulse-induced metastable state and interpret it in terms of transport in a doped Wigner crystal lattice.

    • Anze Mraz
    • , Michele Diego
    •  & Dragan Mihailovic
  • Article
    | Open Access

    Alpha particle clustering plays a significant role in lighter nuclei. Here the authors study the exotic 5α gas-like clustering state of 20Ne, that is 5α condensate state.

    • Bo Zhou
    • , Yasuro Funaki
    •  & Taiichi Yamada
  • Article
    | Open Access

    Here, the authors report the unexpected observation of different electronic properties of bilayer graphene/boron nitride heterostructures at 0° and 60° twist angles, showing the complex interplay between lattice relaxation and the electronic properties of moiré structures.

    • Everton Arrighi
    • , Viet-Hung Nguyen
    •  & Rebeca Ribeiro-Palau
  • Article
    | Open Access

    Resistive switching of 1T-TaS2 is promising for next-generation electronics. Here, using in operando electron microscopy, the authors determine that Joule heating drives the switching process, which will aid the engineering of future devices.

    • James L. Hart
    • , Saif Siddique
    •  & Judy J. Cha
  • Article
    | Open Access

    Soft magnetic materials are critical components of electric motors, generators and transformers, however obtaining a material that is magnetically soft, but mechanically robust and stable at high temperature is very difficult. Here, Han et al succeed in combining these disparate properties by introducing ferromagnetic Widmanstätten patterned intermetallic precipitates into a ferromagnetic alloy matrix.

    • Liuliu Han
    • , Fernando Maccari
    •  & Dierk Raabe
  • Article
    | Open Access

    The anomalous Hall effect in materials with complex magnetic structures has attracted significant research attention. Here the authors report anisotropic anomalous Hall effect in epitaxial NiCo2O4 films attributed to an extended toroidal quadrupole conical magnetic order.

    • Hiroki Koizumi
    • , Yuichi Yamasaki
    •  & Hideto Yanagihara
  • Article
    | Open Access

    W. X. Zhao et al. study the higher-order topological insulator candidate Bi4Br4 by angle-resolved photoemission spectroscopy (ARPES) and ab-initio calculation. They provide strong evidence for the higher-order topological insulator phase, including a signature of the hinge states inside the (100) surface gap.

    • Wenxuan Zhao
    • , Ming Yang
    •  & Lexian Yang
  • Article
    | Open Access

    Magnetoelectric coupling, where magnetic and electronic order is linked, allows for the control of magnetism via an electric field and vice versa, potentially offering new approaches to data storage, sensors, actuators and wealth of other devices. Here, using a diverse array of experimental probes, Xu et al show the emergence of both diagonal and off-diagonal magnetoelectric coupling in CoTe6O13.

    • Xianghan Xu
    • , Yiqing Hao
    •  & R. J. Cava
  • Article
    | Open Access

    Grain boundary atomic structures of crystalline materials have long been believed to be commensurate with the crystal periodicity of the adjacent crystals. Here, the authors discover an incommensurate grain boundary structure based on direct observations and theoretical calculations.

    • Takehito Seki
    • , Toshihiro Futazuka
    •  & Naoya Shibata
  • Article
    | Open Access

    The microscopic mechanism of superconducting pairing in hole-doped cuprates is still debated. Here, using state-of-the-art numerical techniques, the authors examine the properties of pairs of holes in a model relevant to cuprates revealing two types of bound states involving light and heavy hole pairs.

    • A. Bohrdt
    • , E. Demler
    •  & F. Grusdt
  • Article
    | Open Access

    Intrinsic anomalous Hall effect has been observed in twisted graphene multilayers, but these structures are typically not energetically favorable. This study extends these observations to Bernal-stacked tetralayer graphene, which is the most stable configuration of four-layer graphene.

    • Hao Chen
    • , Arpit Arora
    •  & Kian Ping Loh
  • Article
    | Open Access

    Examples of 2D heavy-fermion materials are rare, and the details of their electronic structure have remained elusive. Here, Nakamura et al. report the synthesis and angle-resolved photoemission spectroscopy measurements of a monolayer Kondo lattice, YbCu2, on a Cu(111) surface with an estimated coherence temperature of 30 K.

    • Takuto Nakamura
    • , Hiroki Sugihara
    •  & Shin-ichi Kimura
  • Article
    | Open Access

    The predicted dissipative quantum phase transition in a Josephson junction coupled to resistive environment has been examined in recent experiments. In a heat transport experiment, Subero et al. show that the junction acts as an inductor at high frequencies, while DC charge transport confirms insulating behaviour.

    • Diego Subero
    • , Olivier Maillet
    •  & Jukka P. Pekola
  • Article
    | Open Access

    The authors report a controllable third-order cusp singularity in the phase-tracked closed-loop oscillation of two coupled mechanical modes. This finding addresses the challenge of constructing and controlling higher-order singularities.

    • Xin Zhou
    • , Xingjing Ren
    •  & Hui Jing
  • Article
    | Open Access

    Predicting properties at the interface of materials is crucial for advanced materials design. Here, the authors introduce a high-throughput computational framework, InterMatch, for predicting several properties of an interface by using the databases of individual bulk materials.

    • Eli Gerber
    • , Steven B. Torrisi
    •  & Eun-Ah Kim
  • Article
    | Open Access

    Quantum effects due to zero-point phonon vibrations are well-explored in bulk ferroelectrics, but little is known about them in ultra-thin films. Luo et al. report atomistic simulations of ultra-thin ferroelectrics, showing that, unlike in bulk, quantum fluctuations stabilize topological structures.

    • Wei Luo
    • , Alireza Akbarzadeh
    •  & Laurent Bellaiche
  • Article
    | Open Access

    Layered thio- and seleno-phosphate ferroelectrics show promise for next-generation memory but have thermal stability issues. Using the electric field-driven phase transition in antiferroelectric CuCrP2S6, the authors introduce a robust memristor, emphasizing the potential of van der Waals antiferroelectrics in advanced neuromorphic computing.

    • Yinchang Ma
    • , Yuan Yan
    •  & Xixiang Zhang
  • Article
    | Open Access

    Graphene quantum dots promise applications for spin and valley qubits; however a demonstration of phase coherent oscillations has been lacking. Here the authors report coherent charge oscillations and measurements of coherence times in highly tuneable double quantum dots in bilayer graphene.

    • K. Hecker
    • , L. Banszerus
    •  & C. Stampfer
  • Article
    | Open Access

    Unconventional charge order with chiral response to a magnetic field was observed in kagome metals like KV3Sb5, but the mechanism is not fully understood. Tazai et al. develop a theory based on the bond order fluctuation mechanism and provide a unified view of quantum phases in this material family.

    • Rina Tazai
    • , Youichi Yamakawa
    •  & Hiroshi Kontani
  • Article
    | Open Access

    sp3 amorphous carbon exhibits exceptional mechanical, thermal, and optical properties, but cannot be synthesized using traditional processes. Here authors report a nearly pure sp3−hybridized amorphous carbon synthesized from C70 which shows more short/medium-range order and enhanced thermal conductivity compared to C60.

    • Yuchen Shang
    • , Mingguang Yao
    •  & Bingbing Liu
  • Article
    | Open Access

    Antiferromagnets exhibit high frequency magnons, in the THz regime, a point potentially useful for applications, however, it has meant that detecting spin-fluctuations in antiferromagnets is typically too fast for current experimental approaches. Here Weiss et al use femtosecond noise correlation spectroscopy to observe magnon fluctuations in Sm0.7Er0.3FeO3.

    • M. A. Weiss
    • , A. Herbst
    •  & T. Kurihara
  • Article
    | Open Access

    Ice formation on grooved surfaces is ubiquitous, but controlling orientation is difficult due to lack of mechanistic insight. Here, the authors observed oriented growth using graphene oxide nanosheets as probes, revealing the effect of groove size, and programmed ice growth to fabricate freeze-cast metamaterials.

    • Meng Li
    • , Nifang Zhao
    •  & Hao Bai
  • Article
    | Open Access

    Recently, time-reversal symmetry-breaking charge order was demonstrated in the AV3Sb5 (A = K, Rb, Cs) family of kagome superconductors. Here the authors extend this observation to the recently discovered kagome material ScV6Sn6 and discuss differences and similarities to other charge-ordered kagome lattices.

    • Z. Guguchia
    • , D. J. Gawryluk
    •  & H. Luetkens
  • Article
    | Open Access

    Experimental approaches that can directly measure spin-lattice coupling are rare. Here, authors report direct observation of the coupling of the phonon and magnon dynamics of a coherently driven electromagnon in a multiferroic hexaferrite using time-resolved X-ray diffraction. (277 characters in total).

    • Hiroki Ueda
    • , Roman Mankowsky
    •  & Urs Staub
  • Article
    | Open Access

    The authors demonstrate a large ensemble of quantum dots which is characterized using a cryogenic multiplexer-demultiplexer circuit based on selective area growth nanowires, establishing the feasibility of scaling future quantum circuits.

    • Dāgs Olšteins
    • , Gunjan Nagda
    •  & Thomas S. Jespersen
  • Article
    | Open Access

    Nonlinear optical processes like higher-order harmonic generation in solids depend on several factors. Here the authors explore the optical nonlinearity of hexagonal boron nitride and find that enhanced nonlinearity is due to electron-phonon and phonon-polariton couplings.

    • Jared S. Ginsberg
    • , M. Mehdi Jadidi
    •  & Alexander L. Gaeta
  • Article
    | Open Access

    A charge-density wave state was recently reported in the bilayer kagome metal ScV6Sn6, but its nature is debated. Here, using inelastic X-ray scattering, the authors observe two competing charge-density waves and find the ground state is promoted by a momentum-dependent electron-phonon interaction.

    • Saizheng Cao
    • , Chenchao Xu
    •  & Yu Song
  • Article
    | Open Access

    SrTiO3-based heterostructures display intriguing low-temperature transport features. Here the authors study LaAlO3/SrTiO3 nanoscale crossbar devices, revealing correlations between electron pairing without superconductivity, anomalous Hall effect, and electronic nematicity, suggesting a shared microscopic origin.

    • Aditi Nethwewala
    • , Hyungwoo Lee
    •  & Jeremy Levy
  • Article
    | Open Access

    Here authors explore volume diffusion within crystalline solids at the atomic scale. They use high resolution microscopy techniques to provide insights into the movement of individual atoms within a crystal lattice, revealing the intricate dynamics of volume diffusion processes.

    • Peter Schweizer
    • , Amit Sharma
    •  & Xavier Maeder
  • Article
    | Open Access

    Topological classification of interacting electronic states has emerged as an important topic recently. Wagner at al. show that the momentum structure of the zeros of the electron Green’s function can be used to identify a topological Mott insulator phase, similarly to the single-particle dispersion.

    • N. Wagner
    • , L. Crippa
    •  & G. Sangiovanni
  • Article
    | Open Access

    External fields can control the motion of colloidal particles inducing different trajectories depending on for instance the particle size. The authors here use nonperiodic energy landscapes and topological protection to transport a collection of identical colloidal particles simultaneously and independently.

    • Nico C. X. Stuhlmüller
    • , Farzaneh Farrokhzad
    •  & Daniel de las Heras