Topological matter articles within Nature Communications

Featured

  • Article
    | Open Access

    Superconductors with hexagonal symmetry are expected to be isotropic particularly near the critical temperature Tc, a property called emergent rotational symmetry (ERS). Here, the authors use calorimetry to study the hexagonal kagome superconductor CsV3Sb5 and find a violation of the expected ERS, hinting at realization of exotic superconductivity.

    • Kazumi Fukushima
    • , Keito Obata
    •  & Shingo Yonezawa
  • Article
    | Open Access

    Here the authors demonstrate a broadband nonlinear optical diode effect and its electric control in the magnetic Weyl semimetal CeAlSi. Their findings advance ongoing research to identify novel optical phenomena in topological materials.

    • Christian Tzschaschel
    • , Jian-Xiang Qiu
    •  & Su-Yang Xu
  • Article
    | Open Access

    Several recent experimental studies have found disconnected Fermi surface arcs emerging below the Neel temperature in several rare-earth mono-pnictides. While these electronic states have been attributed to a non-collinear antiferromagnetic order, experimental evidence of this has been lacking. Here Huang et al demonstrate the emergence of non-collinear antiferromagnetic order using spin-polarized scanning tunnelling microscopy.

    • Zengle Huang
    • , Hemian Yi
    •  & Weida Wu
  • Article
    | Open Access

    Kekulé vortices in hexagonal lattices can host fractionalized charges at zero magnetic field, but have remained out of experimental reach. Here, the authors report a Kekulé vortex in the local density states of graphene around a chemisorbed hydrogen adatom.

    • Yifei Guan
    • , Clement Dutreix
    •  & Vincent T. Renard
  • Article
    | Open Access

    Moiré patterns have been experimentally observed in heterostructures comprised of topological insulator films. Here, the authors propose that topological insulator-based moiré heterostructures could be a host of isolated topologically non-trivial moiré minibands for the study of the interplay between topology and correlation.

    • Kaijie Yang
    • , Zian Xu
    •  & Chao-Xing Liu
  • Article
    | Open Access

    Fermi arcs show unpredictable diffraction features resulting from their long-range scattering order in aperiodic systems. Here, authors continuously twist a bi-block Weyl meta-crystal and experimentally observe the twisted Fermi arc reconstruction.

    • Hanyu Wang
    • , Wei Xu
    •  & Biao Yang
  • Article
    | Open Access

    The authors propose that screw or edge dislocations can trap Majorana zero modes in the absence of an external magnetic field. They predict that the Majoranas will appear as second-order topological modes on the four corners of an embedded 2D subsystem defined by the cutting plane of the dislocation.

    • Lun-Hui Hu
    •  & Rui-Xing Zhang
  • Article
    | Open Access

    Here the authors experimentally demonstrate the anomalous and Chern topological phases in a hyperbolic non-reciprocal scattering network, establishing unidirectional channels to induce new and exciting wave transport properties in curved spaces.

    • Qiaolu Chen
    • , Zhe Zhang
    •  & Romain Fleury
  • Article
    | Open Access

    Van Hove singularities (VHS) are believed to exist in one and two dimensions, but rarely found in three dimensions (3D). Here the authors report the discovery of 3D VHS in a topological magnet EuCd2As2 by magneto-infrared spectroscopy.

    • Wenbin Wu
    • , Zeping Shi
    •  & Xiang Yuan
  • Article
    | Open Access

    Vortex string, hypothetical topological defects in cosmology, are predicted to support massless chiral modes. The authors successfully mimicked vortex-string physics in a metamaterial system and experimentally observed the chiral modes within it.

    • Jingwen Ma
    • , Ding Jia
    •  & Xiang Zhang
  • Article
    | Open Access

    Artificial magnetic fields have been meticulously engineered in a 3D acoustic crystal, facilitating the creation of 3D flat bands through Landau quantization of quasiparticles arising from nodal-ring band degeneracies.

    • Zheyu Cheng
    • , Yi-Jun Guan
    •  & Baile Zhang
  • Article
    | Open Access

    The bulk photovoltaic effect and DC photocurrent generation can be used to detect topology and geometry in non-centrosymmetric quantum materials. Here, the authors theoretically propose the detection of DC shot noise as a diagnostic tool for the characterization of the band quantum geometry under relaxed symmetry conditions.

    • Longjun Xiang
    • , Hao Jin
    •  & Jian Wang
  • Article
    | Open Access

    S. Gassner et al. propose using light pulses to drive a centrosymmetric s-wave superconductor with strong spin-orbit coupling into a metastable triplet p-wave superconductor with non-trivial topology. The two superconducting orders must be closely competing in equilibrium and the light pulse must break a generalized, dynamic form of inversion symmetry.

    • Steven Gassner
    • , Clara S. Weber
    •  & Martin Claassen
  • Article
    | Open Access

    Here the authors develop a coupled ring resonators platform for realizing topological states of matter with hyperbolic dispersion thus offering an approach to boost the efficiency of topological photonic devices.

    • Lei Huang
    • , Lu He
    •  & Xiangdong Zhang
  • Article
    | Open Access

    Entanglement entropy exhibits rich phenomenology connected to different kinds of phases in condensed matter. Here, the authors confirm some of these predictions by experimentally probing nonlocal correlations in 1D and 2D phononic crystal based on interconnected resonating acoustic cavities.

    • Zhi-Kang Lin
    • , Yao Zhou
    •  & Jian-Hua Jiang
  • Article
    | Open Access

    Huang et al. study fractional quantum Hall (fQH) states in high-quality GaAs/AlGaAs samples. They report evidence for a fQH state at filling factor ν = 9/11, which they associate with the formation of six-flux composite fermions.

    • Haoyun Huang
    • , Waseem Hussain
    •  & G. A. Csáthy
  • Article
    | Open Access

    Applications of spontaneous symmetry breaking are hindered by unavoidable imperfections. Here, the authors reveal how a phase defect provides topological robustness to this process, enabling a bias free realization without fine tuning of parameters.

    • Stéphane Coen
    • , Bruno Garbin
    •  & Julien Fatome
  • Article
    | Open Access

    When multiple oscillators are tuned, degeneracies occur on a knot-shaped region in the space of tuning parameters. This knot influences how such systems can be tuned. Here, the authors reconcile two common means for visualizing this influence.

    • Chitres Guria
    • , Qi Zhong
    •  & Jack Gwynne Emmet Harris
  • Article
    | Open Access

    While the classification of single-particle topological phases has been established, recent efforts have been made to extend it to interacting limit. Here the authors present a classification of interacting topological systems in 2D based on the generalization of real space invariants.

    • Jonah Herzog-Arbeitman
    • , B. Andrei Bernevig
    •  & Zhi-Da Song
  • Article
    | Open Access

    R.-J. Slager et al. extend the theory of multigap topology from static to non-equilibrium systems. They identify Floquet-induced non-Abelian braiding, resulting in a phase characterized by anomalous Euler class, a multi-gap topological invariant. They also find a gapped anomalous Dirac string phase. Both phases have no static counterparts and exhibit distinct boundary signatures.

    • Robert-Jan Slager
    • , Adrien Bouhon
    •  & F. Nur Ünal
  • Article
    | Open Access

    P. Rout et al. study Josephson junctions where the weak link is WSe2-encapsulated bilayer graphene, which features helical edge modes. They argue that the supercurrent channels along opposite edges of the weak link are coupled by a circulating helical mode.

    • Prasanna Rout
    • , Nikos Papadopoulos
    •  & Srijit Goswami
  • Article
    | Open Access

    The charge-density-wave Weyl semimetal (TaSe4)2I is a candidate for an axion insulator, however it may be obscured by polaron physics. Here, using ultrafast terahertz photocurrent spectroscopy, the authors realize phase switches from the polaronic state, to the charge density wave phase, and to the Weyl phase.

    • Bing Cheng
    • , Di Cheng
    •  & Jigang Wang
  • Article
    | Open Access

    Strongly correlated and topological phases of matter can be often described using the tools of quantum field theory. Here the authors report the thermal Hall effect in the antiferromagnetic skyrmion lattice of MnSc2S4, revealing transport features that can be attributed to an emergent SU(3) gauge field.

    • Hikaru Takeda
    • , Masataka Kawano
    •  & Chisa Hotta
  • Article
    | Open Access

    3D higher-order topological insulators (HOTIs) exhibit 1D hinge states depending on extrinsic sample details, while intrinsic features of HOTIs remain unknown. Here, K.S. Lin et al. introduce the framework of spin-resolved topology to show that helical HOTIs can realize a doubled axion insulator phase with nontrivial partial axion angles.

    • Kuan-Sen Lin
    • , Giandomenico Palumbo
    •  & Barry Bradlyn
  • Article
    | Open Access

    Nanoscale ferroelectric domains called electric bubbles are shown to behave as dynamical particles. Using atomistic simulations and experiments, the authors reveal a bubble liquid phase and demonstrate teleportation-like displacements of single bubbles.

    • S. Prokhorenko
    • , Y. Nahas
    •  & L. Bellaiche
  • Article
    | Open Access

    The thermal Hall effect has been reported in several materials, but it is not expected in triangular lattice systems due to chirality cancellation. Kim et al. report the thermal Hall effect attributed to topological spin fluctuations in the supposedly paramagnetic phase of YMnO3 with a trimerized triangular lattice.

    • Ha-Leem Kim
    • , Takuma Saito
    •  & Je-Geun Park
  • Article
    | Open Access

    At the microscopic level, the localized spins arise due to the electron-electron interactions. Here, the authors show how a topological phase of the Haldane spin chain emerges in a two-orbital Hubbard model with increasing interaction strength.

    • A. Jażdżewska
    • , M. Mierzejewski
    •  & J. Herbrych
  • Article
    | Open Access

    The metastable state with a complex domain structure in 1T-TaS2 has been intensively studied. Using a multi-tip scanning tunnelling microscope, Mraz et al. reveal the microscopic dynamics of the current-pulse-induced metastable state and interpret it in terms of transport in a doped Wigner crystal lattice.

    • Anze Mraz
    • , Michele Diego
    •  & Dragan Mihailovic
  • Article
    | Open Access

    W. X. Zhao et al. study the higher-order topological insulator candidate Bi4Br4 by angle-resolved photoemission spectroscopy (ARPES) and ab-initio calculation. They provide strong evidence for the higher-order topological insulator phase, including a signature of the hinge states inside the (100) surface gap.

    • Wenxuan Zhao
    • , Ming Yang
    •  & Lexian Yang
  • Article
    | Open Access

    Topological classification of interacting electronic states has emerged as an important topic recently. Wagner at al. show that the momentum structure of the zeros of the electron Green’s function can be used to identify a topological Mott insulator phase, similarly to the single-particle dispersion.

    • N. Wagner
    • , L. Crippa
    •  & G. Sangiovanni
  • Article
    | Open Access

    External fields can control the motion of colloidal particles inducing different trajectories depending on for instance the particle size. The authors here use nonperiodic energy landscapes and topological protection to transport a collection of identical colloidal particles simultaneously and independently.

    • Nico C. X. Stuhlmüller
    • , Farzaneh Farrokhzad
    •  & Daniel de las Heras
  • Article
    | Open Access

    Antiferromagnetic topological materials have attracted attention recently due to their unique quantum properties and application potential. Here the authors establish an antiferromagnetic topological insulator in NdBi and demonstrate gapped and gapless surface states in two different magnetic domains.

    • A. Honma
    • , D. Takane
    •  & T. Sato
  • Article
    | Open Access

    Current approaches to distinguish topological phases from topologically-trivial phases have limited general applicability. Here, in a photonic-crystal context, the authors demonstrate that in trivial structures the bulk local density of states (LDOS) extends all the way to the edges and corners, while in topological structures the bulk LDOS actually avoids the edges and corners.

    • Biye Xie
    • , Renwen Huang
    •  & Shuang Zhang
  • Article
    | Open Access

    A Weyl semimetal formally requires either broken time reversal symmetry or inversion symmetry. One class of Weyl semimetals-the crystal family of NdAlSi-exhibits both. Here, Li et al perform angle-resolved photoemission spectroscopy measurements on NdAlSi, and observe the formation of an additional Weyl fermion as the material becomes ferrimagnetic.

    • Cong Li
    • , Jianfeng Zhang
    •  & Oscar Tjernberg
  • Article
    | Open Access

    The authors study (Bi,Sb)2Te3/FeTe bilayers, which feature emergent superconductivity at the interface with Tc ~ 12 K. Through angle-resolved photoemission spectroscopy and electrical transport measurements, they argue that the Dirac-fermion-mediated Ruderman-Kittel-Kasuya-Yosida-type interaction weakens antiferromagnetic order in FeTe layer, allowing for superconductivity.

    • Hemian Yi
    • , Lun-Hui Hu
    •  & Cui-Zu Chang