Articles in 2024

Filter By:

  • Mechanochemistry is a promising technology to tackle current and future polymer waste streams for a sustainable future. With this review, we take into account synthetic, computational, technical, and engineering perspectives to converge trituration and polymer mechanochemistry with a particular focus on the fate of commodity polymers and potential technologies to monitor mechanochemical reactions while they occur. We highlight the need for future transdisciplinary research to tackle the high-leverage parameters governing an eventually successful mechanochemical polymer degradation approach for a circular economy.

    • Simay Aydonat
    • Adrian H. Hergesell
    • Robert Göstl
    ReviewOpen Access
  • To functionalize a poly(isosorbide carbonate) (PIC)-based polymer and evaluate its recyclability, several types of diol comonomers were copolymerized with isosorbide. The thermal and mechanical properties and decomposition behavior of the PIC copolymers were investigated. The thermal stability of PIC was retained, and its glass transition temperature was systematically controlled by copolymerization. The decomposition of the PIC copolymers upon treatment with aqueous ammonia yielded monomers and urea, and the decomposition rate was governed by the structure of the comonomer.

    • Kazuaki Rikiyama
    • Akari Matsunami
    • Daisuke Aoki
    Original Article
  • Oligoisoprene macromonomer, which bears a terminal vinyl group and cis-1,4 regularity, was prepared by the metathesis degradation of high-molecular-weight polyisoprene with ethylene in a high selectivity and yield. The ethenolysis is also applicable for the degradation of natural rubber-derived polyisoprene, although the catalytic activity decreased. The prepared oligoisoprene macromonomer was successfully copolymerized with ethylene similarly with 1-hexadecene using a phenoxyimine-ligated titanium catalyst. The oligoisoprene-grafted polyethylene showed a typical stress‒strain curve, of which the tensile modulus and yielding stress are comparable to those of linear low-density polyethylene.

    • Ryo Tanaka
    • Akane Shimmei
    • Takeshi Shiono
    Original ArticleOpen Access
  • As porous polymer materials with continuous epoxy skeletons and pores, epoxy monoliths exhibit unique mechanical properties and fracture behavior different from the bulk thermoset of epoxy resins. In this article, we describe the thermal properties, pore structures, and mechanical properties of epoxy resins with tensile and compressive deformation of the monoliths. In addition, a change in the inner porous structure after large deformation was nondestructively observed by X-ray CT imaging.

    • Kazuma Aragishi
    • Yoshihiro Takeda
    • Akikazu Matsumoto
    Original Article
  • Amine-cured epoxy resins bearing ester moieties were synthesized, and their properties, hydrolytic degradation behavior, and biomineralization were investigated. Neopentyl glycol diglycidate (NPG) was used as the epoxide and was cured with diethylenetriamine and isophoronediamine at different ratios. The Tgs and degradability were controlled using the composition of amines. To demonstrate their potential application as degradable materials for bone and dental repair, composites containing hydroxyapatite were prepared by curing NPG and the amines in the presence of HA. Bone-like apatite was grown on a composite by immersion in synthetic biofluid.

    • Bungo Ochiai
    • Yutaka Nakazawa
    • Takahiro Kawai
    Original Article
  • Our recent studies on the synthesis, characterization, degradation and applications of vinyl polyperoxides are reviewed. Primarily, the recent achievements in the design, biocompatibility, thermal and enzymatic degradation of water-soluble vinyl polyperoxides and copolyperoxides are described. Finally, future development possibilities and challenges of vinyl polyperoxides for various potential applications are summarised.

    • Pousali Samanta
    • Sourav Mete
    • Priyadarsi De
    Focus Review
  • Acrylate polymerizations catalyzed by Lewis pairs (LP) composed of B(C6F5)3 and various Lewis bases were investigated using two procedures based on different monomer/catalyst addition sequences. When Lewis bases were added to B(C6F5)3-activated n-butyl acrylate (nBA) (procedure 1), the polymerization proceeded quantitatively using all Lewis bases. In contrast, the type of Lewis base significantly affected the polymerization results when nBA was added to interacting LPs (procedure 2). 19F nuclear magnetic resonance analysis of the LPs indicated that weakly interacting LPs efficiently initiated the polymerizations in procedure 2.

    • Yuka Naganawa
    • Kazumasa Mori
    • Masato Suzuki
    Original Article
  • The depolymerization of super engineering plastics such as polysulfone (PSU) smoothly proceeded in the presence of methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol.

    • Yasunori Minami
    • Rena Honobe
    • Masaru Yoshida
    Original Article
  • The hydrogenolysis of PEG-modified soluble lignin was investigated with series of transition metal complexes to afford alkyl guaiacols. Although the introduced PEG moiety was also susceptible against the hydrogenolysis, in situ modification in PEG solvent was found effective for maintaining the lignin soluble and improved degradation efficiency.

    • Shuhei Kusumoto
    • Takuya Higashi
    • Kyoko Nozaki
    Original ArticleOpen Access