Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

B(C6F5)3-based Lewis pair-catalyzed acrylate polymerization: Lewis base effects on pairing interactions

Abstract

Acrylate polymerizations catalyzed by Lewis pairs (LP) composed of B(C6F5)3 and various Lewis bases (phosphines, amines, and an N-heterocyclic carbene) in dichloromethane were investigated using two procedures based on different monomer/catalyst addition sequences. In procedure 1, Lewis bases were added to B(C6F5)3-activated n-butyl acrylate (nBA), and the polymerization proceeded quantitatively using all Lewis bases at a wide temperature range (−60 °C to 30 °C). A low nucleophilic Lewis base Et3N also initiated the polymerization even at −60 °C. However, t-butyl acrylate was not polymerized, as LP promoted its conversion into acrylic acid and isobutene. In procedure 2, nBA was added to interacting LPs; the type of Lewis base significantly affected the polymerization results. Specifically, polymerization was not observed when 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and PnBu3 were applied; however, similar to the reaction in procedure 1, PPh3, PtBu3, and 1,4-diazabicyclo[2.2.2]octane (DABCO) initiated nBA polymerization. The pairing interactions between LBs/B(C6F5)3 (PPh3, Et3N, DBU, and DABCO) were investigated using the shift of 19F nuclear magnetic resonance signals, demonstrating that weak interacting LPs efficiently initiated the polymerizations in procedure 2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Stephan DW. Frustrated Lewis pairs. J Am Chem Soc. 2015;137:10018–32. https://doi.org/10.1021/jacs.5b06794.

    Article  CAS  PubMed  Google Scholar 

  2. Stephan DW. The broadening reach of frustrated Lewis pair chemistry. Science. 2016;354:aaf7229 https://doi.org/10.1126/science.aaf7229.

    Article  CAS  PubMed  Google Scholar 

  3. Welch GC, Juan RRS, Masuda JD, Stephan DW. Reversible, metal-free hydrogen activation. Science. 2006;314:1124–26. https://doi.org/10.1126/science.1134230.

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hounjet LJ, Bannwarth C, Garon CN, Caputo CB, Grimme S, Stephan DW. Combinations of ethers and B(C6F5)3 function as hydrogenation catalysts. Angew Chem Int Ed. 2013;52:7492–95. https://doi.org/10.1002/anie.201303166.

    Article  CAS  Google Scholar 

  5. Mahdi T, Stephan DW. Enabling catalytic ketone hydrogenation by frustrated Lewis pairs. J Am Chem Soc. 2014;136:15809–12. https://doi.org/10.1021/ja508829x.

    Article  CAS  PubMed  Google Scholar 

  6. Parks DJ, Piers WE. Tris(pentafluorophenyl)boron-catalyzed hydrosilation of aromatic aldehydes, ketones, and esters. J Am Chem Soc. 1996;118:9440–41. https://doi.org/10.1021/ja961536g.

    Article  CAS  Google Scholar 

  7. Geier SJ, Stephan DW. Lutidine/B(C6F5)3: at the boundary of classical and frustrated Lewis pair reactivity. J Am Chem Soc. 2009;131:3476–77. https://doi.org/10.1021/ja900572x.

    Article  CAS  PubMed  Google Scholar 

  8. Rocchigiani L, Ciancaleoni G, Zuccaccia C, Macchioni A. Probing the association of frustrated phosphine–borane Lewis pairs in solution by NMR spectroscopy. J Am Chem Soc. 2014;136:112–5. https://doi.org/10.1021/ja4119169.

    Article  CAS  PubMed  Google Scholar 

  9. Johnstone TC, Wee GNJH, Stephan DW. Accessing frustrated Lewis pair chemistry from a spectroscopically stable and classical Lewis acid-base adduct. Angew Chem Int Ed. 2018;57:5881–84. https://doi.org/10.1002/anie.201802385.

    Article  CAS  Google Scholar 

  10. Mayer RJ, Hampel N, Ofial AR. Lewis acidic boranes, Lewis bases, and equilibrium constants: a reliable scaffold for a quantitative Lewis acidity/basicity scale. Chem Eur J. 2021;27:4070–80. https://doi.org/10.1002/chem.202003916.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y, Miyake GM, John MG, Falivene L, Caporaso L, Cavallo L, et al. Lewis pair polymerization by classical and frustrated Lewis pairs: acid, base and monomer scope and polymerization mechanism. Dalton Trans. 2012;41:9119 https://doi.org/10.1039/c2dt30427a.

    Article  CAS  PubMed  Google Scholar 

  12. McGraw ML, Chen EYX. Lewis pair polymerization: perspective on a ten-year journey. Macromolecules. 2020;53:6102–22. https://doi.org/10.1021/acs.macromol.0c01156.

    Article  ADS  CAS  Google Scholar 

  13. Zhang Y, Miyake GM, Chen EYX. Alane-based classical and frustrated Lewis pairs in polymer synthesis: rapid polymerization of MMA and naturally renewable methylene butyrolactones into high-molecular-weight polymers. Angew Chem Int Ed. 2010;49:10158–62. https://doi.org/10.1002/anie.201005534.

    Article  CAS  Google Scholar 

  14. Wang Q, Zhao W, Zhang S, He J, Zhang Y, Chen EYX. Living polymerization of conjugated polar alkenes catalyzed by n-heterocyclic olefin-based frustrated Lewis Pairs. ACS Catal. 2018;8:3571–8. https://doi.org/10.1021/acscatal.8b00333.

    Article  CAS  Google Scholar 

  15. Sáez R, McArdle C, Salhi F, Marquet J, Sebastián RM. Controlled living anionic polymerization of cyanoacrylates by frustrated Lewis pair based initiators. Chem Sci. 2019;10:3295–99. https://doi.org/10.1039/C8SC04729D.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang H, Wang Q, He J, Zhang Y. Living polymerization of acrylamides catalysed by N-heterocyclic olefin-based Lewis pairs. Polym Chem. 2019;10:3597–603. https://doi.org/10.1039/C9PY00427K.

    Article  CAS  Google Scholar 

  17. Bai Y, He J, Zhang Y. Ultra‐high‐molecular‐weight polymers produced by the immortal phosphine‐based catalyst system. Angew Chem Int Ed. 2018;57:17230–34. https://doi.org/10.1002/anie.201811946.

    Article  CAS  Google Scholar 

  18. Jia YB, Ren WM, Liu SJ, Xu T, Wang YB, Lu XB. Controlled divinyl monomer polymerization mediated by Lewis pairs: a powerful synthetic strategy for functional polymers. ACS Macro Lett. 2014;3:896–99. https://doi.org/10.1021/mz500437y.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang P, Zhou H, Lu XB. Living and chemoselective (Co)polymerization of polar divinyl monomers mediated by bulky Lewis pairs. Macromolecules. 2019;52:4520–25. https://doi.org/10.1021/acs.macromol.9b00652.

    Article  ADS  CAS  Google Scholar 

  20. Bai Y, Wang H, He J, Zhang Y, Chen EYX. Dual-initiating and living frustrated Lewis pairs: expeditious synthesis of biobased thermoplastic elastomers. Nat Commun. 2021;12:4874 https://doi.org/10.1038/s41467-021-25069-6.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. McGraw ML, Clarke RW, Chen EYX. Compounded sequence control in polymerization of one-pot mixtures of highly reactive acrylates by differentiating Lewis pairs. J Am Chem Soc. 2020;142:5969–73. https://doi.org/10.1021/jacs.0c01127.

    Article  CAS  PubMed  Google Scholar 

  22. Bai Y, Wang H, He J, Zhang Y. Rapid and scalable access to sequence‐controlled DHDM multiblock copolymers by FLP polymerization. Angew Chem Int Ed. 2020;59:11613–19. https://doi.org/10.1002/anie.202004013.

    Article  CAS  Google Scholar 

  23. Reilly LT, McGraw ML, Eckstrom FD, Clarke RW, Franklin KA, Chokkapu ER, et al. Compounded interplay of kinetic and thermodynamic control over comonomer sequences by Lewis pair polymerization. J Am Chem Soc. 2022;144:23572–84. https://doi.org/10.1021/jacs.2c10568.

    Article  CAS  PubMed  Google Scholar 

  24. McGraw ML, Reilly LT, Clarke RW, Cavallo L, Falivene L, Chen EY‐X. Mechanism of spatial and temporal control in precision cyclic vinyl polymer synthesis by Lewis pair polymerization. Angew Chem Int Ed. 2022;61:e202116303 https://doi.org/10.1002/anie.202116303.

    Article  ADS  CAS  Google Scholar 

  25. McGraw ML, Clarke RW, Chen EYX. Synchronous control of chain length/sequence/topology for precision synthesis of cyclic block copolymers from monomer mixtures. J Am Chem Soc. 2021;143:3318–22. https://doi.org/10.1021/jacs.1c00561.

    Article  CAS  PubMed  Google Scholar 

  26. Hosoi Y, Takasu A, Matsuoka S, Hayashi M. N-heterocyclic carbene initiated anionic polymerization of (E, E)-methyl sorbate and subsequent ring-closing to cyclic poly(alkyl sorbate). J Am Chem Soc. 2017;139:15005–12. https://doi.org/10.1021/jacs.7b06897.

    Article  CAS  PubMed  Google Scholar 

  27. Muramatsu Y, Takasu A. Synthetic innovations for cyclic polymers. Polym J. 2022;54:121–32. https://doi.org/10.1038/s41428-021-00560-5.

    Article  CAS  Google Scholar 

  28. Yato H, Oto K, Takasu A, Higuchi M. Catenane formation of a cyclic poly(alkyl sorbate) via chain-growth polymerization induced by an N-heterocyclic carbene and ring-closing without extreme dilution. RSC Adv. 2023;13:13616–23. https://doi.org/10.1039/D3RA01614E.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knaus MGM, Giuman MM, Pöthig A, Rieger B. End of frustration: catalytic precision polymerization with highly interacting Lewis Pairs. J Am Chem Soc. 2016;138:7776–81. https://doi.org/10.1021/jacs.6b04129.

    Article  CAS  PubMed  Google Scholar 

  30. Xu T, Chen EYX. Probing site cooperativity of frustrated phosphine/borane Lewis pairs by a polymerization study. J Am Chem Soc. 2014;136:1774–77. https://doi.org/10.1021/ja412445n.

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Chen EYX. Lewis pair polymerization of acrylic monomers by N-heterocyclic carbenes and B(C6F5)3. Isr J Chem. 2015;55:216–25. https://doi.org/10.1002/ijch.201400136.

    Article  ADS  CAS  Google Scholar 

  32. Zhang ZH, Wang X, Wang XJ, Li Y, Hong M. Tris(2,4-difluorophenyl)borane/Triisobutylphosphine Lewis pair: a thermostable and air/moisture-tolerant organic catalyst for the living polymerization of acrylates. Macromolecules. 2021;54:8495–502. https://doi.org/10.1021/acs.macromol.1c01356.

    Article  ADS  CAS  Google Scholar 

  33. Zhao W, Wang Q, He J, Zhang Y. Boron-based Lewis pairs catalyzed living, regioselective, and topology‐controlled polymerization of (E, E)‐Alkyl sorbets. Macromol Rapid Commun. 2022;43:2200088 https://doi.org/10.1002/marc.202200088.

    Article  CAS  Google Scholar 

  34. Nzahou Ottou W, Conde-Mendizabal E, Pascual A, Wirotius AL, Bourichon D, Vignolle J, et al. Organic Lewis pairs based on phosphine and electrophilic silane for the direct and controlled polymerization of methyl methacrylate: experimental and theoretical investigations. Macromolecules. 2017;50:762–74. https://doi.org/10.1021/acs.macromol.6b02205.

    Article  ADS  CAS  Google Scholar 

  35. Xu P, Xu X. Homoleptic rare-earth aryloxide based Lewis pairs for polymerization of conjugated polar alkenes. ACS Catal. 2018;8:198–202. https://doi.org/10.1021/acscatal.7b02875.

    Article  CAS  Google Scholar 

  36. Su Y, Zhao Y, Zhang H, Luo Y, Xu X. Rare-earth aryloxide/ylide-functionalized phosphine frustrated Lewis pairs for the polymerization of 4-vinylpyridine and its derivatives. Macromolecules. 2021;54:7724–31. https://doi.org/10.1021/acs.macromol.1c01339.

    Article  ADS  CAS  Google Scholar 

  37. Mori K, Shimizu A, Horibe M, Takei M, Awano N, Matsuoka S, et al. Lewis pair radical polymerization “on-water”. Macromolecules. 2021;54:3–10. https://doi.org/10.1021/acs.macromol.0c01969.

    Article  ADS  CAS  Google Scholar 

  38. Koyama T, Shimizu A, Matsuoka S, Suzuki M. Lewis pair RAFT polymerization of methacrylates on-water: evidence of radical propagation mechanism. Chem Lett. 2022;51:477–80. https://doi.org/10.1246/cl.220025.

    Article  CAS  Google Scholar 

  39. Saegusa T, Kobayashi S, Kimura Y. Hydrogen-transfer polymerization of acrylic acid to poly(β-propiolactone). Macromolecules. 1974;7:256–58. https://doi.org/10.1021/ma60038a021.

    Article  ADS  Google Scholar 

  40. Kadokawa J, Kaneko Y, Yamada S, Ikuma K, Tagaya H, Chiba K. Synthesis of hyperbranched polymers via proton-transfer polymerization of acrylate monomer containing two hydroxy groups. Macromol Rapid Commun. 2000;21:362–8. 10.1002/(SICI)1521-3927(20000401)21:73.0.CO;2-F.

    Article  CAS  Google Scholar 

  41. Matsuoka S, Namera S, Suzuki M. Oxa-Michael addition polymerization of acrylates catalyzed by N-heterocyclic carbenes. Polym Chem. 2015;6:294–301. https://doi.org/10.1039/C4PY01184H.

    Article  CAS  Google Scholar 

  42. Holschumacher D, Bannenberg T, Hrib CG, Jones PG, Tamm M. Heterolytic dihydrogen activation by a frustrated carbene–borane lewis pair. Angew Chem Int Ed. 2008;47:7428–32. https://doi.org/10.1002/anie.200802705.

    Article  CAS  Google Scholar 

  43. Di Saverio A, Focante F, Camurati I, Resconi L, Beringhelli T, D’Alfonso G, et al. Oxygen-bridged borate anions from tris(pentafluorophenyl)borane: synthesis, nmr characterization, and reactivity. Inorg Chem. 2005;44:5030–41. https://doi.org/10.1021/ic0502168.

    Article  CAS  PubMed  Google Scholar 

  44. Chen J, Chen E. Reactivity of amine/E(C6F5)3 (E = B, Al) Lewis pairs toward linear and cyclic acrylic monomers: hydrogenation vs. polymerization. Molecules. 2015;20:9575–90. https://doi.org/10.3390/molecules20069575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arduengo AJ, Krafczyk R, Schmutzler R, Craig HA, Goerlich JR, Marshall WJ, et al. Imidazolylidenes, imidazolinylidenes and imidazolidines. Tetrahedron. 1999;55:14523–34. https://doi.org/10.1016/S0040-4020(99)00927-8.

    Article  CAS  Google Scholar 

  46. Serpell CJ, Cookson J, Thompson AL, Brown CM, Beer PD. Haloaurate and halopalladate imidazolium salts: structures, properties, and use as precursors for catalytic metal nanoparticles. Dalton Trans. 2013;42:1385–93. https://doi.org/10.1039/C2DT31984E.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Grants-in-Aid for Scientific Research (22K05211).

Author information

Authors and Affiliations

Authors

Contributions

YN: data curation, investigation, visualization, and writing–original draft. KM: initial investigation. SM: conceptualization, funding acquisition, project administration, supervision, writing–original draft, and writing–review and editing. MS: supervision, writing–review and editing.

Corresponding author

Correspondence to Shin-ichi Matsuoka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naganawa, Y., Mori, K., Matsuoka, Si. et al. B(C6F5)3-based Lewis pair-catalyzed acrylate polymerization: Lewis base effects on pairing interactions. Polym J 56, 145–151 (2024). https://doi.org/10.1038/s41428-023-00868-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00868-4

Search

Quick links