Research articles

Filter By:

Article Type
Year
  • Photonic integrated processors couple to free-space structured light and on-chip processing reveals its amplitude and phase distribution. The authors demonstrate this concept for higherorder beams, thereby expanding the potential applications of photonic integrated processors.

    • Johannes Bütow
    • Varun Sharma
    • Peter Banzer
    ArticleOpen Access
  • Relativistic laser-solid interactions are simulated via particle-in-cell (PIC) approaches, while subrelativistic regimes rely on radiation-hydrodynamics formulations. To validate the methods at the transition from relativistic to subrelativistic laser intensities, the authors propose a testbed to experimentally benchmark PIC simulations.

    • Long Yang
    • Lingen Huang
    • Constantin Bernert
    ArticleOpen Access
  • Colloidal nanocrystals are used to prepare high-color-purity metal halide perovskites for LEDs, but the color purity is disrupted by the broadening of the photoluminescent spectrum. The authors present a method to quantify the distinct effects causing such broadening and identify ideal conditions to remove the broadening due to exciton-phonon coupling.

    • Hyun Myung Jang
    • Song Hee Lee
    • Tae-Woo Lee
    ArticleOpen Access
  • Integrated communication and sensing require high performance, sensing precision and preliminary knowledge of the channel, posing challenges to sensing weak signals from non-stationary channels. In this work, the authors demonstrate a weak signal extraction method with weak measurement, achieving weak signal sensing through a non-stationary channel.

    • Qi Song
    • Hongjing Li
    • Guihua Zeng
    ArticleOpen Access
  • In the quantum Hall regime, electrical current flows along the edges in a chiral fashion and they determine the Hall resistance plateaus. This work reports on experiments on fractional and integer quantum Hall edge channel mixing in a quantum point contact, which lead to unexpectedly anomalous resistance plateaus, shedding light onto the edge reconstruction and equilibration processes.

    • Mohammad Hamzah Fauzi
    • Keita Nakagawara
    • Yoshiro Hirayama
    ArticleOpen Access
  • Transition metal dichalcogenide-based photovoltaics offer the prospect of increased specific power compared to incumbent solar technologies but there are engineering challenges that come with integrating these materials into high-efficiency devices. Here, the authors develop a model to describe the relationship between material quality and the performance limits of single junction solar cells built with various transition metal dichalcogenides.

    • Koosha Nassiri Nazif
    • Frederick U. Nitta
    • Eric Pop
    ArticleOpen Access
  • Quantum-inspired thermal diffusion systems have been realized the thermal localization and design of robust thermal decay by topological methodology as well as wave systems. As a further development, this paper demonstrates that initial temperature distributions for topological edge modes control the diffusion direction in a honeycomb-shaped periodic structure.

    • Keita Funayama
    • Jun Hirotani
    • Hiroya Tanaka
    ArticleOpen Access
  • Non-Hermitian skin effect, as an important consequence of a non-Hermitian topological system, has recently attracted great attention. This paper reports an anomalous non-Hermitian skin effect, where the correspondence between skin modes and the non-zero winding number defined within point gaps can be broken, enabling further understanding of the non-Bloch band theory in the non-Hermitian field.

    • Gang-Feng Guo
    • Xi-Xi Bao
    • Wu-Ming Liu
    ArticleOpen Access
  • The iron chalcogenide material FeSe1-xTex constitutes an important family of unconventional superconductors but its nematic phase was less explored due to a lack of single crystals. In this study, the authors provide a systematic study of the electronic structure for nematic FeSe1-xTex and observe that as the Te content increases a gradual shift and renormalization of the dxy orbital occurs, concomitant with the enhancement of superconductivity.

    • Archie B. Morfoot
    • Timur K. Kim
    • Amalia I. Coldea
    ArticleOpen Access
  • Twisted double bilayer graphene has recently become a popular system to investigate strongly correlated phenomenon where the twist angle is a key degree of freedom. Here, the authors investigate thermopower in twisted double bilayer graphene finding a large enhancement of thermopower and magnetoresistance within a small magnetic field near the charge neutrality point, indicating a compensated semimetallic state.

    • Ayan Ghosh
    • Souvik Chakraborty
    • Anindya Das
    ArticleOpen Access
  • This study tackles the detection of individual molecules by combining a hybrid sensor—a nitrogen vacancy center (NV) and a dangling bond on the diamond surface—with a multi-tone dynamical decoupling sequence. Via numerical simulations the authors prove that the sequence minimizes the impact of decoherence, which allows using the dangling-bond as a signal amplifier.

    • Ainitze Biteri-Uribarren
    • Pol Alsina-Bolívar
    • Jorge Casanova
    ArticleOpen Access
  • Quantum spin liquids, with their fractionalized excitations, are intriguing yet challenging to realise. In this work, the authors demonstrate the feasibility of preparing a trimer spin liquid in a honeycomb array of Rydberg atoms through numerical studies.

    • Milan Kornjača
    • Rhine Samajdar
    • Fangli Liu
    ArticleOpen Access
  • Optical knots are three-dimensional topologies made of singularities in phase or polarization, but the robustness of their topological structure under optical disturbances is still unexplored. The authors experimentally verify the robustness of optical knots to environmental disturbances, indicating them as a viable vector of information.

    • Nazanin Dehghan
    • Alessio D’Errico
    • Ebrahim Karimi
    ArticleOpen Access
  • Using strain to control either magnetization dynamics or electrical properties is a method to create functional materials with energy efficient applications. Here, the authors show how the converse magneto-photostrictive effect can be used to engineer the static and dynamic magnetic properties of FeGa thin films supported on PMN-PZT substrates.

    • Matthieu Liparo
    • Jean-Philippe Jay
    • David T. Dekadjevi
    ArticleOpen Access
  • Bloch oscillations (BOs) are developed to be a powerful tool for the detection of topological properties in lattice systems. Here, the authors propose topological BOs in a three-dimensional higher-order topological insulator model and demonstrate the dynamics of the wave-packet and certain higher-order edge states in this model using electronic circuits.

    • Naiqiao Pan
    • Tian Chen
    • Xiangdong Zhang
    ArticleOpen Access
  • Thermal fluctuations play a fundamental role in determining the exotic phases in low-dimensional quantum materials. Here, utilizing the quantum magnetometry based on nitrogen-vacancy centers in diamond, the thermally-activated escape of bistable magnetic states in a finite 2D ferromagnet is observed with giant tunability by temperature and magnetic field near the critical point.

    • Chen Wang
    • Xi Kong
    • Hualing Zeng
    ArticleOpen Access
  • Flexural oscillations of singly-clamped nanowires can be detected by interferometry for diameters above 50 nm, while below such diameter the detection becomes challenging. The authors detect force derivatives as small as 10-9 N/m at room temperature by measuring hybrid vibration modes originated by coupling a nanowire and a cantilever.

    • Maneesha Sharma
    • Aniruddha Sathyadharma Prasad
    • Thomas Mühl
    ArticleOpen Access
  • Extending the spectral range of on-chip tunable Raman laser is challenging due to the limited Raman frequency shifts and pump tuning bandwidth. The authors combine the dispersion engineering of thin film lithium niobate with cascaded Raman lasing to realize a widely tunable laser with 335-nm spectral extension and sub-milliwatt threshold.

    • Yanjing Zhao
    • Xiaoyue Liu
    • Minhao Pu
    ArticleOpen Access
  • Polarization, or a division into mutually hostile groups, is a common feature of social systems and is studied in terms of the structural balance of semicycles in signed networks. The authors propose a computationally efficient framework for multiscale analysis of structural balance based on semiwalk approximations applicable to any simple signed network.

    • Szymon Talaga
    • Massimo Stella
    • Andreia Sofia Teixeira
    ArticleOpen Access