Polymer chemistry articles within Nature Chemistry

Featured

  • Article |

    Two-dimensional covalent organic frameworks (2D COFs) enable the construction of bespoke functional materials, but designing dynamic 2D COFs is challenging. Now it has been shown that perylene-diimide-based COFs can open and close their pores upon uptake or removal of guests, while fully retaining their crystalline long-range order. Moreover, the variable COF geometry enables stimuli-responsive optoelectronic properties.

    • Florian Auras
    • , Laura Ascherl
    •  & Thomas Bein
  • Research Briefing |

    The precision synthesis of cyclic polymers with ultrahigh molar mass (UHMM) and circularity is challenging. Now, a method that involves superbase-mediated living linear-chain growth followed by macromolecular cyclization triggered by protic quenching enables the on-demand production of UHMM cyclic polymers with a narrow dispersity and closed-loop chemical recyclability.

  • Article
    | Open Access

    Knots reduce the tensile strength of macroscopic threads and fibres. Now it has been shown that the presence of a well-defined overhand knot in a polymer chain can substantially increase the rate of scission of the polymer under tension, as deformation of the polymer backbone induced by the tightening knot activates otherwise unreactive covalent bonds.

    • Min Zhang
    • , Robert Nixon
    •  & David A. Leigh
  • Article |

    The selective synthesis of ultrahigh-molar-mass (UHMM) cyclic polymers from direct polymerization is elusive. Using a chemically recyclable polythioester as a model, it has now been shown that a common superbase mediates living linear-chain growth, followed by proton-triggered linear-to-cyclic topological transformation, producing UHMM cyclic polymers with a narrow dispersity.

    • Li Zhou
    • , Liam T. Reilly
    •  & Eugene Y.-X. Chen
  • Article
    | Open Access

    Radical polymerizations yield polymers that cannot easily be degraded. The co-polymerization of cyclobutene-based monomers with conventional vinyl monomers has now been shown to result in co-polymers with cyclobutane mechanophores in their backbone, which facilitate on-demand degradation through a combination of mechanical activation and hydrolysis. This approach offers a promising avenue for the degradation of all-carbon-bond-backbone polymers.

    • Peng Liu
    • , Sètuhn Jimaja
    •  & Nico Bruns
  • Article
    | Open Access

    Enzyme-initiated polymerization-induced self-assembly has been used to generate various biomimetic structures. Now, myoglobin’s activity is used for biocatalytic polymerization-induced self-assembly to generate vesicular artificial cells. As various cargoes can be encapsulated during polymerization, these artificial cells are capable of protein expression and can act as microreactors for distinct enzymatic reactions.

    • Andrea Belluati
    • , Sètuhn Jimaja
    •  & Nico Bruns
  • Research Briefing |

    Ribonucleoprotein granules are ubiquitous in living organisms with the protein and RNA components having distinct roles. In the absence of proteins, RNAs are shown to undergo phase separation upon heating. This transition is driven by desolvation entropy and ion-mediated crosslinking and is tuned by the chemical specificity of the RNA nucleobases.

  • Article |

    Sequences of synthetic polymers are generally heterogeneous and dictate many of their physiochemical properties, but are challenging to determine. Now an imaging method, termed CREATS (coupled reaction approach toward super-resolution imaging), can count, localize and identify each monomer of single polymer chains during (co)polymerization.

    • Rong Ye
    • , Xiangcheng Sun
    •  & Peng Chen
  • News & Views |

    Scientists have been studying how polymers break in solutions for decades, but the mechanism by which chains are stretched to the point of covalent bond scission is not trivial. Now, an experiment series provides ample support for a dynamic model in which chains uncoil from end to middle, while concurrently relaxing.

    • Charles E. Diesendruck
  • Article |

    Rapid solvent flows stretch dissolved polymer chains to their breaking point by hitherto-elusive molecular mechanisms. Now, analysis of competing mechanochemical reactions suggests a broad distribution of molecular geometries of fracturing chains. This occurs because, in each chain, fracture and kinetically destabilizing backbone stretching compete on submillisecond timescales.

    • Robert T. O’Neill
    •  & Roman Boulatov
  • News & Views |

    Complexity is a hallmark of biological systems, but scientific experiments are typically conducted in simplified conditions. Now, diverse polymers that mimic the local environments of complex biological mixtures have been shown to improve protein folding, stability and function.

    • Alana P. Gudinas
    •  & Danielle J. Mai
  • Article |

    The inability to access well-defined polysaccharides in sufficient quantities has hampered our understanding of their structure–function relationships. Now it has been shown that native precision polysaccharides can be readily prepared via living polymerization of 1,6-anhydrosugars. The obtained polymers display excellent chemical recyclability, suggesting their potential utility as a class of sustainable materials.

    • Lianqian Wu
    • , Zefeng Zhou
    •  & Jia Niu
  • Article |

    Covalent organic frameworks (COFs) have remained difficult to grow as single crystals. Now, amphiphilic amino-acid derivatives that assemble in micelles in aqueous solutions have been shown to promote the growth of a variety of imine-bridged COFs into single crystals, in a step-by-step fashion, within their hydrophobic compartment.

    • Zhipeng Zhou
    • , Lei Zhang
    •  & Zhikun Zheng
  • Article |

    Polyhydroxyalkanoates are potential substitutes for non-degradable polyolefin plastics. Now, it has been shown that structurally related methylated polyhydroxybutyrates, synthesized from carbon monoxide and 2-butenes, can provide a full suite of polyolefin-like polymers. These materials can be recycled or upcycled, and their properties can be easily tuned by varying the cis/trans ratio of the starting materials.

    • Zhiyao Zhou
    • , Anne M. LaPointe
    •  & Geoffrey W. Coates
  • News & Views |

    Plasmonic heating by nanoparticles has been used to promote a range of chemical reactions. Now, thermoplasmonic activation has been applied to latent ruthenium catalysts, enabling olefin metathesis initiated by visible and infrared light.

    • Leah N. Appelhans
  • Article |

    Extensive crosslinking in thermosetting polymers provides their desirable durability but makes them difficult to recycle. Now acetal-based monomers containing nucleophilic pendant groups have been incorporated into polyurethanes, which are stable in aqueous acid yet degradable at room temperature under organic acidic conditions. The degradation products were upcycled into higher-value, long-lasting materials.

    • Ephraim G. Morado
    • , Mara L. Paterson
    •  & Steven C. Zimmerman
  • News & Views |

    Mechanical force has recently become a new tool for chemists to create colours, trigger reactions, and develop advanced fabrication techniques not possible using other methods. Force-induced multiple colouring has now been developed as a printing technique in soft lithography, enabling the colouring of polymeric materials without inks.

    • Xiaocun Lu
  • Article |

    Current strategies for photoinduced olefin metathesis lack wavelength tunability. Now, plasmonic nanoparticles have been used to activate latent ruthenium catalysts, enabling light-induced olefin metathesis in the infrared range with several advantages when compared with conventional heating. Implementing this approach in ring-opening metathesis polymerization resulted in photoresponsive polymer–nanoparticle composites with enhanced mechanical properties.

    • Nir Lemcoff
    • , Noy B. Nechmad
    •  & Yossi Weizmann
  • Article |

    Mechanochemical generation of dyes with different photophysical properties generally requires the use of discrete mechanophore derivatives with unique chemical structures. Now it has been shown that diverse donor–acceptor Stenhouse adducts can be produced via a mechanically gated chromogenic reaction, enabling mechanochemical multicolour lithography.

    • Anna C. Overholts
    • , Wendy Granados Razo
    •  & Maxwell J. Robb
  • Article |

    The synthesis of cyclic polymers remains challenging. Now a trifunctional B-P-B frustrated Lewis pair has been shown to enable easy access to cyclic acrylic polymers through a bimolecular mechanism. These cyclic polymers have enhanced thermodynamic properties compared with their linear counterparts, while maintaining high chemical recyclability.

    • Yanjiao Song
    • , Jianghua He
    •  & Eugene Y.-X. Chen
  • Article
    | Open Access

    Modulation of surface properties and functions can be achieved through covalent and non-covalent molecular binding, but the lack of responsiveness and requirement for specific binding groups makes spatiotemporal control challenging. Now, it has been shown that adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) host is an effective non-covalent binding strategy for programmable surface functionalization.

    • Shaohua Zhang
    • , Wei Li
    •  & Daniela A. Wilson
  • Article |

    The facile release of corrosive HCl gas and plasticizers from poly(vinyl chloride) (PVC) makes it a challenging material to recycle. Now, it has been shown that PVC waste can be directly used as a halogen source to synthesize chloroarenes. This paired electro(de)chlorination is mediated by a phthalate plasticizer already contained in PVC waste.

    • Danielle E. Fagnani
    • , Dukhan Kim
    •  & Anne J. McNeil
  • Article |

    Geminal disubstitution of cyclic monomers is known to improve the chemical recyclability of their polymers, but usually at the expense of performance properties. Now, geminal disubstitution of a six-membered lactone has been shown to synergistically enable chemical recyclability back to the monomer and enhance the materials performance of the resulting polyesters, with properties that rival or exceed those of polyethylene.

    • Xin-Lei Li
    • , Ryan W. Clarke
    •  & Eugene Y.-X. Chen
  • Article
    | Open Access

    The circadian rhythm generates out-of-equilibrium metabolite oscillations controlled by feedback loops under light/dark cycles. Now, it has been shown that these life-like properties can emerge from a non-equilibrium nanosystem comprising a binary population of enzyme-containing polymersomes capable of light-gated chemical communication, controllable feedback and coupling to macroscopic oscillations.

    • Omar Rifaie-Graham
    • , Jonathan Yeow
    •  & Molly M. Stevens
  • Article |

    Identifying and quantifying the biodistribution of synthetic polymeric nanoparticles in biological milieu is crucial for biomedical applications. Now, it has been shown that encoded polymeric amphiphiles with discrete molar masses undergo sequence- and length-dependent self-assembly into precise digital micelles that can be used in direct sequence reading and ex vivo label-free quantification assays.

    • Qiangqiang Shi
    • , Hao Yin
    •  & Shiyong Liu
  • Article |

    Inverse vulcanization (IV) generates sulfur-rich functional polymers from elemental sulfur and organic crosslinkers, but the harsh reaction conditions required limit the scope of suitable crosslinkers. Now, a photoinduced IV has been shown to proceed at ambient temperatures, enabling the use of volatile and gaseous alkenes and alkynes as crosslinkers and broadening the range of products.

    • Jinhong Jia
    • , Jingjiang Liu
    •  & Zheng-Jun Quan
  • Article |

    Polymerization methods that control the cis/trans stereochemistry of repeating alkenes in polyalkenamers remain scarce. Now, an acyclic diene metathesis process has been developed that enables control over the stereochemistry of the polymer backbone. The method harnesses the reactivity of dithiolate Ru carbenes, in combination with cis,cis-diene monomers, to access several classes of polymers with tailored properties.

    • Ting-Wei Hsu
    • , Samuel J. Kempel
    •  & Quentin Michaudel
  • Article |

    Alkyl and aryl polycyanurate networks have now been prepared through polymerization of diols and substituted triazines via a dynamic SNAr reaction. When treated with excess mono alcohol or phenol, the polycyanurate networks can be depolymerized into the starting monomers, which can be separated and reused, thus achieving closed-loop recycling.

    • Zepeng Lei
    • , Hongxuan Chen
    •  & Wei Zhang
  • Article |

    Cyclic polymers are topologically interesting and envisioned as a lubricant material, but methods for the scalable synthesis of pure cyclic polymers are currently elusive. Now, a scalable process has been developed by leveraging heterogeneity of the catalysts with the help of compartmentalized custom glassware, namely, a cyclic polymer dispenser.

    • Ki-Young Yoon
    • , Jinkyung Noh
    •  & Robert H. Grubbs
  • News & Views |

    A grand challenge for bio-based plastics is the ability to cost-effectively manufacture high-performance polymers directly from renewable resources that are also recyclable-by-design. A one-step conversion of xylose to polyesters has been reported, combining a sustainable lifecycle with impressive materials performance.

    • Robin M. Cywar
    •  & Gregg T. Beckham
  • Article |

    The direct copolymerization of carbon dioxide and commodity olefins has been a long-standing challenge in polymer science. Now, an indirect approach has been developed in which hydrogenated disubstituted valerolactones derived from telomerization of CO2 and butadiene can undergo ring-opening polymerization, yielding chemically recyclable and degradable aliphatic polyesters with high CO2 content.

    • Rachel M. Rapagnani
    • , Rachel J. Dunscomb
    •  & Ian A. Tonks
  • Article |

    Functionalizing an intact carbohydrate core with acetals allows for the dramatically simplified production of a plastic precursor directly during the initial fractionation of non-edible biomass. When polymerized, the rigid and polar carbohydrate core also leads to bioplastics with competitive material and end-of life properties.

    • Lorenz P. Manker
    • , Graham R. Dick
    •  & Jeremy S. Luterbacher
  • Article
    | Open Access

    Cytoskeletons are essential components of cells that perform a variety of tasks, and artificial cytoskeletons that perform these functions are required for the bottom-up assembly of synthetic cells. Now, a multi-functional cytoskeleton mimic has been engineered from DNA, consisting of confined DNA filaments that are capable of reversible self-assembly and transport of gold nanoparticles and vesicular cargo.

    • Pengfei Zhan
    • , Kevin Jahnke
    •  & Kerstin Göpfrich
  • News & Views |

    The rational synthesis of organic nanotubes and their hierarchical architectures has remained challenging. Now, one-dimensional hollow covalent organic frameworks have been prepared that can further assemble into toroid-shaped materials.

    • Gabrielle A. Leith
    •  & Natalia B. Shustova
  • Article |

    A wide variety of covalent organic cages and two- and three-dimensional covalent organic frameworks have been obtained through dynamic covalent chemistry, yet the synthesis of their one-dimensional counterparts has remained challenging. Porous covalent organic nanotubes have now been prepared through reversible aldehyde–amine condensation and it has been shown that these can further assemble into toroidal architectures.

    • Kalipada Koner
    • , Shayan Karak
    •  & Rahul Banerjee
  • News & Views |

    Plastics that are developed from renewable resources and can be recycled are highly environmentally desirable alternatives to current petroleum-based non-degradable polymers. Now, an effective and robust industrially relevant strategy towards high-performance biomass-derived degradable poly(γ-thiobutyrolactone)s has been developed.

    • Sophie M. Guillaume
  • Q&A |

    Athina Anastasaki from ETH Zürich talks to Nature Chemistry about her career, her research in polymer chemistry and the challenges she dealt with in her academic pathway.

    • Kathryn Ashe
  • Q&A |

    Miao Hong, based at the Shanghai Institute of Organic Chemistry, tells Nature Chemistry about her work in sustainable polymer design and her thoughts about the future of this field.

    • Kathryn Ashe
  • News & Views |

    Membraneless coacervate droplets have been widely investigated as potential candidates for early cells or protocells. Now, they are shown to grow, divide and differentiate into two populations in a rock pore model that mimics an early Earth environment.

    • Hadi M. Fares
  • Article |

    Synthetic approaches that can simultaneously control both polymer sequence and dispersity are difficult to achieve. Now, a switchable RAFT agent that regulates chain transfer activity during controlled radical polymerization has been shown to enable the one-pot synthesis of sequence-controlled multiblocks with on-demand control over dispersity while maintaining high livingness.

    • Maria-Nefeli Antonopoulou
    • , Richard Whitfield
    •  & Athina Anastasaki
  • Article |

    The contributions of chirality and conformation as contributing factors to the biological properties of synthetic nanomaterials remain underexplored. A synthesis of bottlebrush polymers with mirror-image side chains has now been developed and it has been revealed that an interplay between side-chain absolute configuration and flexibility influences the biological properties of these polymers both in vitro and in vivo.

    • Hung V.-T. Nguyen
    • , Yivan Jiang
    •  & Jeremiah A. Johnson
  • Article |

    Five-membered lactones are common in nature and are produced in large quantities from biomass, but a lack of ring strain means that ring-opening polymerization is usually thermodynamically unfavourable at ambient conditions. Now, an irreversible ring-opening polymerization of biomass-derived five-membered thionolactones—driven by S/O isomerization—has been developed, enabling their conversion into sustainable polymers at industrially relevant temperatures.

    • Pengjun Yuan
    • , Yangyang Sun
    •  & Miao Hong
  • Article |

    Degradable polymers are important for technological applications and sustainability, but they remain difficult to access via ring-opening metathesis polymerization (ROMP). Now, commercial 2,3-dihydrofuran is shown to be an effective ROMP comonomer for various norbornenes. This copolymerization generates new acid-degradable polymers with controlled molecular weights, different functionalities and tunable properties.

    • John D. Feist
    • , Daniel C. Lee
    •  & Yan Xia
  • News & Views |

    Finding alternative fates for plastics that would otherwise end up in landfills requires innovative chemistry. Now, poly(acrylic acid) from diaper waste has been converted into valuable pressure-sensitive adhesives through an open-loop recycling method that is cost-effective and environmentally competitive.

    • Meredith A. Borden
    •  & Frank A. Leibfarth
  • News & Views |

    The precisely ordered helical structures of biomacromolecules have long-inspired chemists to create synthetic helical polymers. Now, a new step-growth approach has enabled facile synthesis of helical polymers through the highly efficient sulfur(vi) fluoride exchange click chemistry.

    • Cangjie Yang
    •  & Jia Niu
  • Article |

    Sulfur(vi) fluoride exchange (SuFEx)—a type of click chemistry that generates SVI-centred covalent linkages—has previously been used for polymer synthesis. Now, modular SuFEx polymerization using SOF4 has been used to generate helical polymers. Unlike previous examples of SuFEx polymerization, the backbone retains SVI–F motifs and therefore is able to undergo further SuFEx click reactions, enabling facile and efficient post-polymerization modification.

    • Suhua Li
    • , Gencheng Li
    •  & K. Barry Sharpless
  • Article |

    Machine learning has now been shown to enable the de novo design of abiotic nuclear-targeting miniproteins. To achieve this, high-throughput experimentation was combined with a directed evolution-inspired deep-learning approach in which the molecular structures of natural and unnatural residues are represented as topological fingerprints. The designed miniproteins, called Mach proteins, are non-toxic and can efficiently deliver antisense cargo in mice.

    • Carly K. Schissel
    • , Somesh Mohapatra
    •  & Bradley L. Pentelute
  • News & Views |

    Recycling polymers to their monomers would enable a circular polymer economy, but this can be challenging, especially for materials with all-carbon backbones. Now, by lowering the strain of cyclooctene through ring fusion, recyclable polymers with useful physical properties can be made by an olefin-metathesis-based route.

    • Yutan Getzler
  • Article |

    Depolymerizable polymers can potentially address challenges in polymer sustainability, but most existing systems lack the useful thermomechanical properties of traditional ones. Now, it has been shown that depolymerizable polymers based on olefin metathesis show good thermal stability as well as versatile mechanical properties and that the monomers used to make them can be prepared from abundant materials.

    • Devavrat Sathe
    • , Junfeng Zhou
    •  & Junpeng Wang